Vertical land motion quantification using space-based geodetic methods: a review

[1]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[2]  ACCELERATION OF SEA LEVEL RISE OVER MALAYSIAN SEAS FROM SATELLITE ALTIMETER , 2016 .

[3]  THE IMPACT OF SEA LEVEL RISE ON GEODETIC VERTICAL DATUM OF PENINSULAR MALAYSIA , 2016 .

[4]  Paolo Baldi,et al.  Present vertical movements in Central and Northern Italy from GPS data: Possible role of natural and anthropogenic causes , 2013 .

[5]  M. Marcos,et al.  Vertical land motion as a key to understanding sea level change and variability , 2016 .

[6]  H. Zebker,et al.  A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers , 2004 .

[7]  Yunlong Wu,et al.  Using combined GRACE and GPS data to investigate the vertical crustal deformation at the northeastern margin of the Tibetan Plateau , 2017 .

[8]  Guochang Xu,et al.  Sciences of geodesy , 2010 .

[9]  H. Zebker,et al.  Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos , 2007 .

[10]  K. Omar,et al.  LAND SUBSIDENCE MONITORING USING PERSISTENT SCATTERER InSAR (PSInSAR) IN KELANTAN CATCHMENT , 2015 .

[11]  T. Baker Absolute sea level measurements, climate change and vertical crustal movements , 1993 .

[12]  Tongqing Wang,et al.  Detecting seasonal and long-term vertical displacement in the North China Plain using GRACE and GPS , 2016 .

[13]  Chung-Yen Kuo,et al.  Vertical Motion Determined Using Satellite Altimetry and Tide Gauges , 2008 .

[14]  Felix W. Landerer,et al.  GPS as an independent measurement to estimate terrestrial water storage variations in Washington and Oregon , 2015 .

[15]  A. Hooper Persistent scatter radar interferometry for crustal deformation studies and modeling of volcanic deformation , 2006 .

[16]  Changsheng Cai,et al.  Precise point positioning using dual-frequency GPS and GLONASS measurements , 2009 .

[17]  S. Na,et al.  Advance in prediction of body tide and ocean tidal loading , 2016, Geosciences Journal.

[18]  B. Pelletier,et al.  Comparing the role of absolute sea-level rise and vertical tectonic motions in coastal flooding, Torres Islands (Vanuatu) , 2011, Proceedings of the National Academy of Sciences.

[19]  Zhong Lu,et al.  Time-scale and mechanism of subsidence at Lassen Volcanic Center, CA, from InSAR , 2016 .

[20]  Guy Wöppelmann,et al.  Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion , 2012 .

[21]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[22]  G. Wöppelmann,et al.  Long-term vertical land motion from double-differenced tide gauge and satellite altimetry data , 2014, Journal of Geodesy.

[23]  Jean-François Crétaux,et al.  Sea level changes from Topex‐Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS , 1999 .

[24]  Ni-Bin Chang,et al.  Applications of SAR Interferometry in Earth and Environmental Science Research , 2009, Sensors.

[25]  Nigel T. Penna,et al.  Practical Considerations before Installing Ground-Based Geodetic Infrastructure for Integrated InSAR and cGNSS Monitoring of Vertical Land Motion , 2017, Sensors.

[26]  W. Prescott,et al.  Assessment of global positioning system measurements for studies of crustal deformation , 1989 .

[27]  R. Fernandes,et al.  Deformation and Tectonics: Contribution of GPS Measurements to Plate Tectonics – Overview and Recent Developments , 2010 .

[28]  Gary T. Mitchum,et al.  Monitoring the Stability of Satellite Altimeters with Tide Gauges , 1998 .

[29]  J. Johansson,et al.  Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results , 2002 .

[30]  C. Shum,et al.  Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia , 2004 .

[31]  Vertical land motion along the Black Sea coast from satellite altimetry, tide gauges and GPS , 2017 .