Resource Human SRMAtlas : A Resource of Targeted Assays to Quantify the Complete Human Proteome Graphical Abstract Highlights

[1]  John N. Hutchinson,et al.  RNA Sequencing Identifies Novel Translational Biomarkers of Kidney Fibrosis. , 2016, Journal of the American Society of Nephrology : JASN.

[2]  R. Aebersold,et al.  Non-invasive prognostic protein biomarker signatures associated with colorectal cancer , 2015, EMBO molecular medicine.

[3]  Luis Mendoza,et al.  Trans‐Proteomic Pipeline, a standardized data processing pipeline for large‐scale reproducible proteomics informatics , 2015, Proteomics. Clinical applications.

[4]  David D. Shteynberg,et al.  State of the Human Proteome in 2014/2015 As Viewed through PeptideAtlas: Enhancing Accuracy and Coverage through the AtlasProphet. , 2015, Journal of proteome research.

[5]  C. Sander,et al.  Applications of targeted proteomics in systems biology and translational medicine , 2015, Proteomics.

[6]  J. Goldstein,et al.  A Century of Cholesterol and Coronaries: From Plaques to Genes to Statins , 2015, Cell.

[7]  Brendan MacLean,et al.  Panorama: A Targeted Proteomics Knowledge Base , 2014, Journal of proteome research.

[8]  Susan E. Abbatiello,et al.  Targeted Peptide Measurements in Biology and Medicine: Best Practices for Mass Spectrometry-based Assay Development Using a Fit-for-Purpose Approach* , 2014, Molecular & Cellular Proteomics.

[9]  Pei Wang,et al.  Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins , 2013, Nature Methods.

[10]  Ruedi Aebersold,et al.  The Mtb proteome library: a resource of assays to quantify the complete proteome of Mycobacterium tuberculosis. , 2013, Cell host & microbe.

[11]  Katarzyna H. Kaminska,et al.  Characterization of drug-induced transcriptional modules: towards drug repositioning and functional understanding , 2013, Molecular systems biology.

[12]  M. Mann,et al.  The coming age of complete, accurate, and ubiquitous proteomes. , 2013, Molecular cell.

[13]  Eric W. Deutsch,et al.  A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis , 2013, Nature.

[14]  S. Carr,et al.  Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry , 2013, Nature Methods.

[15]  Ruedi Aebersold,et al.  Reproducible Quantification of Cancer-Associated Proteins in Body Fluids Using Targeted Proteomics , 2012, Science Translational Medicine.

[16]  R. Aebersold,et al.  Selected reaction monitoring–based proteomics: workflows, potential, pitfalls and future directions , 2012, Nature Methods.

[17]  Luis Mendoza,et al.  PASSEL: The PeptideAtlas SRMexperiment library , 2012, Proteomics.

[18]  Ludovic C. Gillet,et al.  Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis* , 2012, Molecular & Cellular Proteomics.

[19]  Lars Malmström,et al.  Proteome-wide selected reaction monitoring assays for the human pathogen Streptococcus pyogenes , 2012, Nature Communications.

[20]  Masahiro Toda,et al.  Downregulation of KIF23 suppresses glioma proliferation , 2012, Journal of Neuro-Oncology.

[21]  Ruedi Aebersold,et al.  Estimation of Absolute Protein Quantities of Unlabeled Samples by Selected Reaction Monitoring Mass Spectrometry , 2011, Molecular & Cellular Proteomics.

[22]  E. Antonarakis,et al.  Evolving standards in the treatment of docetaxel-refractory castration-resistant prostate cancer , 2011, Prostate Cancer and Prostatic Diseases.

[23]  Gary D Bader,et al.  Too many roads not taken , 2011, Nature.

[24]  Kalle Jonasson,et al.  Prediction of the human membrane proteome , 2010, Proteomics.

[25]  G. Stark,et al.  Overexpression of kinesins mediates docetaxel resistance in breast cancer cells. , 2009, Cancer research.

[26]  Lukas N. Mueller,et al.  Full Dynamic Range Proteome Analysis of S. cerevisiae by Targeted Proteomics , 2009, Cell.

[27]  Christoph H Borchers,et al.  Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma , 2009, Nature Biotechnology.

[28]  W. Kuo,et al.  Abstract #2593: Bioinformatics construction of the human surfaceome and experimental identification of new tumor targets at cell surface , 2009 .

[29]  Jens M. Rick,et al.  Quantitative mass spectrometry in proteomics: a critical review , 2007, Analytical and bioanalytical chemistry.

[30]  Michel Schneider,et al.  UniProtKB/Swiss-Prot. , 2007, Methods in molecular biology.

[31]  Daniel B. Martin,et al.  Computational prediction of proteotypic peptides for quantitative proteomics , 2007, Nature Biotechnology.

[32]  T. Beccari,et al.  Sterol dependent regulation of human TM7SF2 gene expression: role of the encoded 3beta-hydroxysterol Delta14-reductase in human cholesterol biosynthesis. , 2006, Biochimica et biophysica acta.

[33]  Erik K. Malm,et al.  A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics* , 2005, Molecular & Cellular Proteomics.

[34]  R. Aebersold,et al.  Scoring proteomes with proteotypic peptide probes , 2005, Nature Reviews Molecular Cell Biology.

[35]  Nichole L. King,et al.  Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry , 2004, Genome Biology.

[36]  Darryl B. Hardie,et al.  Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). , 2004, Journal of proteome research.

[37]  J. Baty,et al.  Single and multiple ion recording techniques for the analysis of diphenylhydantoin and its major metabolite in plasma. , 1977, Biomedical mass spectrometry.