Glycerol conversion to 1,3-propanediol by newly isolated clostridia

SummaryFrom pasteurized mud and soil samples glycerol-fermenting clostridia that produced 1,3-propanediol, butyrate and acetate were obtained. The isolates were taxonomically characterized and identified as Clostridium butyricum. The most active strain, SH1 = DSM 5431, was able to convert up to 110 g/l of glycerol to 56 g/l of 1,3-propanediol in 29 h. A few Clostridium strains from culture-collections (3 out of 16 of the C. butyricum group) and some isolates of Kutzner from cheese samples were also able to ferment glycerol, but the final concentration and the productivity of 1,3-propanediol was lower than in strain SH1. Strain SH1 grew well in a pH range between 6.0 and 7.5, with a weak optimum at 6.5, and was stimulated by sparging with N2. Best overall productivity was obtained in fed-batch culture with a starting concentration of 5% glycerol. In all fermentations the yield of 1,3-propanediol in relation to glycerol was higher than expected from NADH production by acid formation. On the other hand the H2 production was lower than expected, if per mole of acetyl coenzyme A one mole of H2 is released. The observations point to a substantial transfer of reducing potential from ferredoxin to NAD, which finally results in increased 1,3-propanediol production.

[1]  S. Tanenbaum,et al.  System Development for Linked-Fermentation Production of Solvents from Algal Biomass , 1983, Applied and environmental microbiology.

[2]  J. Zeikus,et al.  Microbial Ecology of Pectin Decomposition in Anoxic Lake Sediments , 1982 .

[3]  H. Biebl,et al.  Fermentative Herstellung von 1,3-Propandiol , 1989 .

[4]  Lillian V. Holdeman,et al.  Anaerobe Laboratory manual , 1977 .

[5]  H. Biebl,et al.  Glycerol fermentation of 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use of a pH-auxostat , 1991, Applied Microbiology and Biotechnology.

[6]  Wolf-Dieter Deckwer,et al.  Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains , 1990, Applied Microbiology and Biotechnology.

[7]  P. De Vos,et al.  The fermentation of glycerol byClostridium butyricum LMG 1212t2 and 1213t1 andC. pasteurianum LMG 3285 , 1991, Applied Microbiology and Biotechnology.

[8]  M. A. Foster,et al.  Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases , 1982, Journal of bacteriology.

[9]  Wu Bin Fermentative production of 1,3-propanediol from glycerol by Clostridium butyricum , 2004 .

[10]  Cecil W. Forsberg,et al.  Production of 1,3-Propanediol from Glycerol by Clostridium acetobutylicum and Other Clostridium Species , 1987, Applied and environmental microbiology.

[11]  W. Deckwer,et al.  Fermentative production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2m3 , 1991, Applied Microbiology and Biotechnology.

[12]  R Gay,et al.  Regulation of the NADH and NADPH-ferredoxin oxidoreductases in clostridia of the butyric group. , 1976, Biochimica et biophysica acta.

[13]  J. C. Ward,et al.  Microbiology of Wetwood: Importance of Pectin Degradation and Clostridium Species in Living Trees , 1981, Applied and environmental microbiology.

[14]  N. Pfennig Rhodocyclus purpureus gen. nov. and sp. nov., a Ring-Shaped, Vitamin B12-Requiring Member of the Family Rhodospirillaceae , 1978 .