Opioid Receptor Subtype Expression Defines Morphologically Distinct Classes of Hippocampal Interneurons

The inhibition of hippocampal pyramidal cells occurs via inhibitory interneurons making GABAergic synapses on distinct segments of the postsynaptic membrane. In area CA1 of the hippocampus, the activation of mu- and delta-opioid receptors inhibits these interneurons, thereby increasing the excitability of the pyramidal cells. Through the use of selective opioid agonists and biocytin-filled whole-cell electrodes, interneurons possessing somata located within stratum oriens of hippocampal slices were classified according to the location of their primary axon termination and the expression of mu- or delta-opioid receptors. Activation of these opioid receptor subtypes resulted in outward currents in the majority of interneurons, which is consistent with their inhibition. Post hoc morphological analysis revealed that those interneurons heavily innervating the pyramidal cell body layer were much more likely to express mu-opioid receptors, whereas cells with axons ramifying in the pyramidal neuron dendritic layers were more likely to express delta-opioid receptors, as defined by the generation of outward currents. This morphological segregation of interneuron projections suggests that mu receptor activation would diminish GABA release onto pyramidal neuron somata, thereby increasing their excitability and output. Conversely, inhibition of interneurons via delta receptor activation would amplify afferent signaling to pyramidal neuron dendrites by reducing GABAergic inhibition of these structures.

[1]  H. Dodt,et al.  Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy , 1990, Brain Research.

[2]  C. McBain,et al.  The hyperpolarization‐activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens‐alveus interneurones. , 1996, The Journal of physiology.

[3]  T. Freund,et al.  Activation of interneurons at the stratum oriens/alveus border suppresses excitatory transmission to apical dendrites in the CA1 area of the mouse hippocampus , 1997, Neuroscience.

[4]  J. Deuchars,et al.  CA1 pyramidal to basket and bistratified cell EPSPs: dual intracellular recordings in rat hippocampal slices , 1998, The Journal of physiology.

[5]  J. Lacaille,et al.  Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  C. Lupica Delta and mu enkephalins inhibit spontaneous GABA-mediated IPSCs via a cyclic AMP-independent mechanism in the rat hippocampus , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  T. Dunwiddie,et al.  Differential effects of mu‐ and delta‐receptor selective opioid agonists on feedforward and feedback GABAergic inhibition in hippocampal brain slices , 1991, Synapse.

[9]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[10]  C. Lupica,et al.  Opioid Inhibition of Hippocampal Interneurons via Modulation of Potassium and Hyperpolarization-Activated Cation (Ih) Currents , 1998, The Journal of Neuroscience.

[11]  C. McBain,et al.  Voltage‐gated potassium currents in stratum oriens‐alveus inhibitory neurones of the rat CA1 hippocampus. , 1995, The Journal of physiology.

[12]  G. B. Watson,et al.  Electrophysiological actions of delta opiods in CA1 of the rat hippocampal slice are mediated by one delta receptor subtype , 1993, Brain Research.

[13]  W. N. Ross,et al.  IPSPs strongly inhibit climbing fiber-activated [Ca2+]i increases in the dendrites of cerebellar Purkinje neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  D. Madison,et al.  Opioid inhibition of GABA release from presynaptic terminals of rat hippocampal interneurons , 1992, Neuron.

[15]  R. Dingledine,et al.  Heterogeneity of synaptic glutamate receptors on CA3 stratum radiatum interneurones of rat hippocampus. , 1993, The Journal of physiology.

[16]  D. Prince,et al.  Synaptic control of excitability in isolated dendrites of hippocampal neurons , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  C. Xie,et al.  Opioid-mediated facilitation of long-term potentiation at the lateral perforant path-dentate granule cell synapse. , 1991, The Journal of pharmacology and experimental therapeutics.

[18]  C. Chavkin,et al.  Effects of chronic morphine administration on the mu and delta opioid responses in the CA1 region of the rat hippocampus. , 1989, The Journal of pharmacology and experimental therapeutics.

[19]  P. Somogyi,et al.  Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons , 1995, Nature.

[20]  Hannah Monyer,et al.  A Novel Type of GABAergic Interneuron Connecting the Input and the Output Regions of the Hippocampus , 1997, The Journal of Neuroscience.

[21]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[22]  R. Traub,et al.  Morphine disrupts long-range synchrony of gamma oscillations in hippocampal slices. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Two temporally overlapping "delayed-rectifiers" determine the voltage-dependent potassium current phenotype in cultured hippocampal interneurons. , 1996, Journal of neurophysiology.

[24]  C. Chavkin,et al.  Opioids activate both an inward rectifier and a novel voltage-gated potassium conductance in the hippocampal formation , 1991, Neuron.

[25]  W. N. Ross,et al.  IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. , 1996, Journal of neurophysiology.

[26]  P. Somogyi,et al.  Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. , 1994, Journal of neurophysiology.

[27]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[28]  K. Halasy,et al.  Enkephalinergic nerve terminals target inhibitory interneurons in the rat hippocampus , 1997, Neuroreport.

[29]  T F Burks,et al.  Bis-penicillamine enkephalins possess highly improved specificity toward delta opioid receptors. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Thomson,et al.  Facilitating pyramid to horizontal oriens‐alveus interneurone inputs: dual intracellular recordings in slices of rat hippocampus , 1998, The Journal of physiology.

[31]  A. Goldstein,et al.  Multiple opioid receptors: ligand selectivity profiles and binding site signatures. , 1989, Molecular pharmacology.

[32]  W. Zieglgänsberger,et al.  Morphine and opioid peptides reduce inhibitory synaptic potentials in hippocampal pyramidal cells in vitro without alteration of membrane potential. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[33]  W. Levy,et al.  Ultrastructural identification of entorhinal cortical synapses in CA1 stratum lacunosum‐moleculare of the rat , 1994, Hippocampus.

[34]  R. Miles,et al.  How Many Subtypes of Inhibitory Cells in the Hippocampus? , 1998, Neuron.

[35]  S. Gasparini,et al.  The Hyperpolarization-Activated Current (Ih/Iq) in Rat Hippocampal Neurons , 1996 .

[36]  T. Freund,et al.  GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus , 1988, Nature.

[37]  D. Johnston,et al.  K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[38]  R. Nicoll,et al.  Enkephalin blocks inhibitory pathways in the vertebrate CNS , 1980, Nature.

[39]  P. Somogyi,et al.  Properties of unitary IPSPs evoked by anatomically identified basket cells in the rat hippocampus , 1995, The European journal of neuroscience.

[40]  Stanley J. Watson,et al.  Immunohistochemical localization of the cloned μ opioid receptor in the rat CNS , 1995, Journal of Chemical Neuroanatomy.

[41]  V. Doze,et al.  Excitatory actions of norepinephrine on multiple classes of hippocampal CA1 interneurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  N. Tamamaki,et al.  Hippocampal pyramidal cells excite inhibitory neurons through a single release site , 1993, Nature.

[43]  Charles R. Breese,et al.  Acetylcholine Activates an α-Bungarotoxin-Sensitive Nicotinic Current in Rat Hippocampal Interneurons, But Not Pyramidal Cells , 1998, The Journal of Neuroscience.

[44]  C. McBain,et al.  Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  J. Kauer,et al.  Hippocampal interneurons are excited via serotonin-gated ion channels. , 1997, Journal of neurophysiology.

[46]  F. Bloom,et al.  Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons. , 1979, Science.

[47]  T. Dunwiddie,et al.  Dissociation of μ and δ opioid receptor-mediated reductions in evoked and spontaneous synaptic inhibition in the rat hippocampus in vitro , 1992, Brain Research.

[48]  T. Dunwiddie,et al.  Electrophysiological interactions of enkephalins with neuronal circuitry in the rat hippocampus. II. Effects on interneuron excitability , 1980, Brain Research.

[49]  T. Freund,et al.  Precision and Variability in Postsynaptic Target Selection of Inhibitory Cells in the Hippocampal CA3 Region , 1993, The European journal of neuroscience.

[50]  C. Lupica,et al.  Cholecystokinin Increases GABA Release by Inhibiting a Resting K+ Conductance in Hippocampal Interneurons , 1997, The Journal of Neuroscience.

[51]  F. Bloom,et al.  The 5-HT3 Receptor Is Present in Different Subpopulations of GABAergic Neurons in the Rat Telencephalon , 1997, The Journal of Neuroscience.

[52]  P. Somogyi,et al.  Synaptic effects of identified interneurons innervating both interneurons and pyramidal cells in the rat hippocampus , 1997, Neuroscience.

[53]  L. Acsády,et al.  Serotonergic control of the hippocampus via local inhibitory interneurons. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[54]  T. Freund,et al.  Synaptic Input of Horizontal Interneurons in Stratum Oriens of the Hippocampal CA1 Subfield: Structural Basis of Feed‐back Activation , 1995, The European journal of neuroscience.

[55]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[56]  D. Johnston,et al.  Correction: K+channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons , 1997, Nature.

[57]  R. Nicoll,et al.  Enkephalin hyperpolarizes interneurones in the rat hippocampus. , 1988, The Journal of physiology.

[58]  C. McBain,et al.  Passive propagation of LTD to stratum oriens-alveus inhibitory neurons modulates the temporoammonic input to the hippocampal CA1 region , 1995, Neuron.