暂无分享,去创建一个
Mark van Hoeij | Carsten Schneider | Clemens G. Raab | Johannes Blümlein | Jakob Ablinger | Abilio De Freitas | E. Imamoglu | C.-S. Radu | M. V. Hoeij | J. Blümlein | E. Imamoglu | J. Ablinger | A. Freitas | C. Raab | Cristian-Silviu Radu | Carsten Schneider | A. D. Freitas
[1] Ken Ono,et al. Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms , 2011, 1104.1182.
[2] L. Dixon,et al. Dimensionally-regulated pentagon integrals☆ , 1993, hep-ph/9306240.
[3] T. DeGrand. Structure functions of quarks, gluons and hadrons in quantum chromodynamics , 1979 .
[4] R. Cutkosky. Singularities and Discontinuities of Feynman Amplitudes , 1960 .
[5] F. Beukers. A Note on the Irrationality of ζ(2) and ζ(3) , 1979 .
[6] J. Vermaseren,et al. Harmonic Polylogarithms , 1999, hep-ph/9905237.
[7] Ken Ono,et al. The web of modularity : arithmetic of the coefficients of modular forms and q-series , 2003 .
[8] Robert S. Maier. On Rationally Parametrized Modular Equations , 2006 .
[9] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[10] Kuo-Tsai Chen,et al. Algebras of iterated path integrals and fundamental groups , 1971 .
[11] J. Fleischer,et al. Two-loop two-point functions with masses: asymptotic expansions and Taylor series, in any dimension , 1993 .
[12] S. Weinzierl,et al. The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms , 2014, 1405.5640.
[13] R. Baxter,et al. Rogers-Ramanujan identities in the hard hexagon model , 1981 .
[14] Stephan Herfurtner. Elliptic surfaces with four singular fibres , 1991 .
[15] A. Manteuffel,et al. A non-planar two-loop three-point function beyond multiple polylogarithms , 2017, 1701.05905.
[16] M. Koecher,et al. Elliptische Funktionen und Modulformen , 1998 .
[17] C. Schneider,et al. The O(αs3) massive operator matrix elements of O(nf) for the structure function F2(x,Q2) and transversity , 2010, Nuclear physics. B.
[18] Raimundas Vidunas. Transformations of some Gauss hypergeometric functions , 2005 .
[19] M. Gell-Mann,et al. Advantages of the color octet gluon picture , 1973 .
[20] T. Riemann,et al. The QCD form factor of heavy quarks at NNLO , 2009, 0905.1137.
[21] S. Weinzierl,et al. Feynman integrals and iterated integrals of modular forms , 2017, 1704.08895.
[22] M.Yu. Kalmykov,et al. Massive Feynman diagrams and inverse binomial sums , 2004 .
[23] J. Blumlein,et al. The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function F2(x,Q2) and transversity , 2014, 1406.4654.
[24] Imperatorskai︠a︡ Akademīi︠a︡ nauk,et al. Novi commentarii Academiae scientiarvm imperialis petropolitanae , 2002 .
[25] M. Gell-Mann. A Schematic Model of Baryons and Mesons , 1964, Resonance.
[26] Propriétés de l'étrangeté et une formule de masse pour les mésons vectoriels , 1965 .
[27] Nucleon Structure, Duality and Elliptic Theta Functions , 1999, hep-ph/9912502.
[28] An Identity Relating a Theta Function to a Sum of Lambert Series , 2001 .
[29] Arthur Cayley. XI. A memoir on the transformation of elliptic functions , 1874, Philosophical Transactions of the Royal Society of London.
[30] F. Wilczek,et al. Possible non-Regge behavior of electroproduction structure functions , 1974 .
[31] O. W. Greenberg. Spin and Unitary Spin Independence in a Paraquark Model of Baryons and Mesons , 1964 .
[32] Cristian-Silviu Radu,et al. The Andrews–Sellers family of partition congruences , 2012, Advances in mathematics.
[33] A. von Manteuffel,et al. Reduze 2 - Distributed Feynman Integral Reduction , 2012, 1201.4330.
[34] Michael E. Hoffman,et al. Quasi-Shuffle Products , 1999 .
[35] Macdonald-type identities , 1978 .
[36] A. Goncharov,et al. Multiple polylogarithms, cyclotomy and modular complexes , 2011, 1105.2076.
[37] H. Politzer,et al. Reliable Perturbative Results for Strong Interactions , 1973 .
[38] Stefan Weinzierl,et al. Picard–Fuchs Equations for Feynman Integrals , 2012, 1212.4389.
[39] L. Tancredi,et al. Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph , 2017, 1704.05465.
[40] J. Blumlein,et al. Iterated Binomial Sums and their Associated Iterated Integrals , 2014, 1407.1822.
[41] M. Böhm,et al. Closed expressions for specific massive multiloop self-energy integrals , 1994 .
[42] J. Blumlein,et al. The three-loop splitting functions Pqg(2) and Pgg(2,NF) , 2017, 1705.01508.
[43] J. A. M. Vermaseren. Harmonic sums, Mellin transforms and Integrals , 1999 .
[44] Hans Rademacher,et al. On the Expansion of the Partition Function in a Series , 1943 .
[45] D. Broadhurst. Elliptic integral evaluation of a Bessel moment by contour integration of a lattice Green function , 2008, 0801.4813.
[46] Carsten Schneider,et al. Simplifying Multiple Sums in Difference Fields , 2013, ArXiv.
[47] E. Remiddi,et al. Schouten identities for Feynman graph amplitudes; The Master Integrals for the two-loop massive sunrise graph , 2013, 1311.3342.
[48] G. Passarino. Elliptic polylogarithms and basic hypergeometric functions , 2016, 1610.06207.
[49] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[50] M. Eichler,et al. Eine Verallgemeinerung der Abelschen Integrale , 1957 .
[51] R. Vidunas. Algebraic Transformations of Gauss Hypergeometric Functions , 2004, math/0408269.
[52] J. Ablinger,et al. Modern Summation Methods and the Computation of 2- and 3-loop Feynman Diagrams , 2010, 1006.4797.
[53] David Broadhurst,et al. Feynman integrals, L-series and Kloosterman moments , 2016, 1604.03057.
[54] R. Ree,et al. Lie Elements and an Algebra Associated With Shuffles , 1958 .
[55] M. Steinhauser. MATAD: a program package for the computation of MAssive TADpoles , 2000 .
[56] R. Oliver. Eta-quotients and theta functions , 2013 .
[57] Carsten Schneider,et al. Modern Summation Methods for Loop Integrals in Quantum Field Theory: The Packages Sigma, EvaluateMultiSums and SumProduction , 2013, Journal of Physics: Conference Series.
[58] I. G. MacDonald,et al. Affine root systems and Dedekind'sη-function , 1971 .
[59] E. Kummer,et al. Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen. , 1840 .
[60] Hans Rademacher,et al. Topics in analytic number theory , 1973 .
[61] Stefan Weinzierl,et al. Nested sums, expansion of transcendental functions and multiscale multiloop integrals , 2002 .
[62] É. Goursat,et al. Sur l'équation différentielle linéaire, qui admet pour intégrale la série hypergéométrique , 1881 .
[63] A. Atkin,et al. Modular Forms , 2017 .
[64] R. Bonciani,et al. Two-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependence , 2016, 1609.06685.
[65] C. Jacobi. Über die Kreistheilung und ihre Anwendung auf die Zahlentheorie. , 1846 .
[66] Mark van Hoeij,et al. Hypergeometric expressions for generating functions of walks with small steps in the quarter plane , 2016, Eur. J. Comb..
[67] Jakob Ablinger,et al. A Computer Algebra Toolbox for Harmonic Sums Related to Particle Physics , 2010, 1011.1176.
[68] J. Blumlein. Structure functions and partondistributions in deep nelasticlepton-hadron scattering athigh energies1 , 1993 .
[69] Stefan Weinzierl,et al. Expansion around half-integer values, binomial sums, and inverse binomial sums , 2004, hep-ph/0402131.
[70] Jean-Pierre Serre. A Course in Arithmetic , 1973 .
[71] Lucy Joan Slater,et al. Generalized hypergeometric functions , 1966 .
[72] S. Pozzorini,et al. Precise numerical evaluation of the two loop sunrise graph Master Integrals in the equal mass case , 2006, Comput. Phys. Commun..
[74] Margaret Nichols. Trans , 2015, De-centering queer theory.
[75] E. Hecke,et al. Zur Theorie der elliptischen Modulfunktionen , 1927 .
[76] F. Brown,et al. Multiple Elliptic Polylogarithms , 2011, 1110.6917.
[77] F. Brown,et al. A K3 in $\phi^{4}$ , 2010, 1006.4064.
[78] B. M. Fulk. MATH , 1992 .
[79] D. Chudnovsky,et al. Elliptic modular functions and elliptic genera , 1988 .
[80] A. Kotikov. Differential equations method. New technique for massive Feynman diagram calculation , 1991 .
[81] C. Jacobi,et al. Fundamenta nova theoriae functionum ellipticarum , 1829 .
[82] M. V. Hoeij. Factoring Polynomials and the Knapsack Problem , 2002 .
[83] David J. Broadhurst. Massive 3-loop Feynman diagrams reducible to SC , 1999 .
[84] R. Vidunas. Darboux evaluations of algebraic Gauss hypergeometric functions , 2005, math/0504264.
[85] M. Steinhauser,et al. Corrections of to the decay of the Z boson into bottom quarks , 1997 .
[86] Baris Kendirli. Fourier Coefficients of a Class of Eta Quotients , 2016, Integers.
[87] Crossing Probabilities and Modular Forms , 2002, math-ph/0209023.
[88] Adrien Marie Legendre. Essai sur la théorie des nombres: TABLES , 2009 .
[89] A. Ogg,et al. Modular forms and Dirichlet series , 1969 .
[90] K. Hensel. Journal für die reine und angewandte Mathematik , 1892 .
[91] G. Köhler. Eta Products and Theta Series Identities , 2010 .
[92] Jacob Sturm,et al. On the congruence of modular forms , 1987 .
[93] H. Czyz,et al. Numerical evaluation of the general massive 2-loop sunrise self-mass master integrals from differential equations , 2002, hep-ph/0203256.
[94] A. Levin. Elliptic polylogarithms: An analytic theory , 1997, Compositio Mathematica.
[95] S. Weinzierl,et al. The sunrise integral and elliptic polylogarithms , 2016, 1606.09457.
[96] H. Hornich. Elliptische Funktionen , 1899 .
[97] S. Kurth,et al. Harmonic sums and Mellin transforms up to two-loop order , 1999 .
[98] J. Blumlein,et al. Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms , 2014, 1403.1137.
[99] J. Blumlein,et al. The transition matrix element Agq(N) of the variable flavor number scheme at O(αs3) , 2014, 1402.0359.
[100] R. Vidunas. Transformations of algebraic Gauss hypergeometric functions , 2008, 0807.4808.
[101] Carsten Schneider,et al. Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials , 2011, ArXiv.
[102] Carsten Schneider,et al. Computer Algebra in Quantum Field Theory , 2013, Texts & Monographs in Symbolic Computation.
[103] Karl Heun,et al. Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten , 1888 .
[104] Henryk Czyz,et al. BOKASUN: A fast and precise numerical program to calculate the Master Integrals of the two-loop sunrise diagrams , 2008, Comput. Phys. Commun..
[105] Differential equations for Feynman graph amplitudes , 1997, hep-th/9711188.
[106] S. Weinzierl,et al. The kite integral to all orders in terms of elliptic polylogarithms , 2016, 1607.01571.
[107] L. Landau. On analytic properties of vertex parts in quantum field theory , 1959 .
[108] James D. Lewis,et al. The Arithmetic and Geometry of Algebraic Cycles , 2000 .
[109] C. Neumann. Vorlesungen uber Riemann's Theorie der Abel'schen Integrale , 1884 .
[110] E. H. Neville. Mathematische Werke , 1948, Nature.
[111] E. Remiddi,et al. Analytic treatment of the two loop equal mass sunrise graph , 2004, hep-ph/0406160.
[112] Mark van Hoeij,et al. Computing Hypergeometric Solutions of Second Order Linear Differential Equations using Quotients of Formal Solutions , 2015, J. Symb. Comput..
[113] P.. Oeuvres scientifiques , 1905 .
[114] S. Weinzierl,et al. The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case , 2015, 1504.03255.
[115] Henri Poincaré,et al. Sur les groupes des équations linéaires , 1884 .
[116] H. Movasati,et al. Heun equations coming from geometry , 2009, 0902.0760.
[117] S. Weinzierl,et al. The iterated structure of the all-order result for the two-loop sunrise integral , 2015, 1512.05630.
[118] S. Weinzierl,et al. A second-order differential equation for the two-loop sunrise graph with arbitrary masses , 2011, 1112.4360.
[119] D. Broadhurst. The master two-loop diagram with masses , 1990 .
[120] Carsten Schneider,et al. Massive 3-loop Ladder Diagrams for Quarkonic Local Operator Matrix Elements , 2012, 1206.2252.
[121] Paul Roman,et al. The Analytic S-Matrix , 1967 .
[122] Christian Bogner,et al. The two-loop sunrise graph with arbitrary masses , 2013, 1302.7004.
[123] Carsten Schneider,et al. The Method of Arbitrarily Large Moments to Calculate Single Scale Processes in Quantum Field Theory , 2017, Physics Letters B.
[124] Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.
[125] S. Moch,et al. The third-order QCD corrections to deep-inelastic scattering by photon exchange , 2005, hep-ph/0504242.
[126] M.N.H. Abel. Recherches sur les fonctions elliptiques. , 1827 .
[127] G. Hardy,et al. Asymptotic Formulaæ in Combinatory Analysis , 1918 .
[128] Frank Garvan. A q -product Tutorial for a q -series Maple Package , 1998, WWW 1998.
[129] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[130] Carsten Schneider,et al. Recent Symbolic Summation Methods to Solve Coupled Systems of Differential and Difference Equations , 2014, ArXiv.
[131] I. Zucker. A systematic way of converting infinite series into infinite products , 1987 .
[132] E. E. Kummer. Über die hypergeometrische Reihe . (Fortsetzung). , 1836 .
[133] V. Kac. Infinite-dimensional algebras, Dedekind's η-function, classical möbius function and the very strange formula , 1978 .
[134] Johannes Blümlein,et al. Algebraic relations between harmonic sums and associated quantities , 2004 .
[135] E. Zermelo,et al. Gesammelte Werke. , 1959, Science.
[136] I. Zucker. Further relations amongst infinite series and products. II. The evaluation of three-dimensional lattice sums , 1990 .
[137] R. Agarwal,et al. Lambert series and Ramanujan , 1993 .
[138] P. Vanhove,et al. Local mirror symmetry and the sunset Feynman integral , 2016, 1601.08181.
[139] J. A. M. Vermaseren,et al. The Multiple Zeta Value data mine , 2009, Comput. Phys. Commun..
[140] R. Vidunas. Transformations and invariants for dihedral Gauss hypergeometric functions , 2011, 1101.3688.
[141] F. Wilczek,et al. Ultraviolet Behavior of Non-Abelian Gauge Theories , 1973 .
[142] J. Blumlein,et al. Generalized Harmonic, Cyclotomic, and Binomial Sums, their Polylogarithms and Special Numbers , 2013, 1310.5645.
[143] A. Hurwitz. Grundlagen einer independenten Theorie der elliptischen Modulfunctionen und Theorie der Multiplicatorgleichungen erster Stufe , 1881 .
[144] B. Kniehl,et al. Two-loop sunset diagrams with three massive lines , 2005, hep-ph/0510235.
[145] P. Stevenhagen,et al. ELLIPTIC FUNCTIONS , 2022 .
[146] Calculation of two-loop self-energies in the electroweak Standard Model , 1994, hep-ph/9406404.
[147] R. Zwicky. A brief Introduction to Dispersion Relations and Analyticity , 2016, 1610.06090.
[148] Fred Diamond,et al. A First Course in Modular Forms , 2008 .
[149] Felix Klein,et al. Vorlesungen über die Theorie der elliptischen Modulfunktionen , 1966 .
[150] A. Polyakov,et al. Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .
[151] Carlos R Mafra,et al. Elliptic multiple zeta values and one-loop superstring amplitudes , 2014, 1412.5535.
[152] Stefano Forte,et al. A Direct Test of Perturbative QCD at Small x , 1994, hep-ph/9406385.
[153] Don Zagier,et al. The Bloch-Wigner-Ramakrishnan polylogarithm function , 1990 .
[154] D. Broadhurst. Three-loop on-shell charge renormalization without integration: $$\Lambda _{QED}^{\overline {MS} } $$ to four loops , 1992 .
[155] Jakob Ablinger,et al. Computer Algebra Algorithms for Special Functions in Particle Physics , 2013, 1305.0687.
[156] A. von Manteuffel,et al. The 3-loop pure singlet heavy flavor contributions to the structure function F2(x,Q2) and the anomalous dimension , 2014, 1409.1135.
[157] Z. Bern,et al. Dimensionally regulated one-loop integrals , 1993 .
[158] M. Veltman. Unitarity and causality in a renormalizable field theory with unstable particles , 1963 .
[159] C. Studerus,et al. Reduze - Feynman integral reduction in C++ , 2009, Comput. Phys. Commun..
[160] Marko Petkovsek,et al. Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..
[161] H. Lehmann. Über Eigenschaften von Ausbreitungsfunktionen und Renormierungskonstanten quantisierter Felder , 1954 .
[162] S. Bauberger,et al. Simple one-dimensional integral representations for two-loop self-energies: the master diagram , 1995 .
[163] Johannes Blumlein,et al. Mellin moments of the O(αs3) heavy flavor contributions to unpolarized deep-inelastic scattering at Q2≫m2 and anomalous dimensions , 2009, 0904.3563.
[164] Carsten Schneider,et al. Evaluation of Multi-Sums for Large Scale Problems , 2012, ArXiv.
[165] Jonathan M. Borwein,et al. A cubic counterpart of Jacobi’s identity and the AGM , 1991 .
[166] Y. Martin. MULTIPLICATIVE ETA -QUOTIENTS , 1996 .
[167] B. Gordon. SOME IDENTITIES IN COMBINATORIAL ANALYSIS , 1961 .
[168] A. Bostan,et al. Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity , 2012, 1211.6031.
[169] Carsten Schneider,et al. Analytic and Algorithmic Aspects of Generalized Harmonic Sums and Polylogarithms , 2013, Journal of Mathematical Physics.
[170] L. Tancredi,et al. On the maximal cut of Feynman integrals and the solution of their differential equations , 2016, 1610.08397.
[171] S. Laporta,et al. difference equations , 2001 .
[172] On the evaluation of a certain class of Feynman diagrams in x-space: Sunrise-type topologies at any loop order , 2005, hep-ph/0506286.
[173] N. H. Abel. Remarques sur quelques propriétés générales d'une certaine sorte de fonctions transcendantes. , 1828 .
[174] P. Vanhove,et al. The elliptic dilogarithm for the sunset graph , 2013, 1309.5865.
[175] Carsten Schneider,et al. The $O(\alpha_s^3 n_f T_F^2 C_{A,F})$} Contributions to the Gluonic Massive Operator Matrix Elements , 2012, 1205.4184.
[176] R. Vidunas. DIHEDRAL GAUSS HYPERGEOMETRIC FUNCTIONS , 2008, 0807.4888.
[177] P. Vanhove,et al. A Feynman integral via higher normal functions , 2014, Compositio Mathematica.
[178] Jonathan M. Borwein,et al. Elliptic integral evaluations of Bessel moments and applications , 2008, 0801.0891.
[179] Moritz Katz. Mathematische Abhandlungen , 1916 .
[180] I. Bierenbaum,et al. The logarithmic contributions to the $$O(\alpha _s^3)$$O(αs3) asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering , 2014, 1403.6356.
[181] R. Feynman. Space - time approach to quantum electrodynamics , 1949 .
[182] Jörg Arndt. On computing the generalized Lambert series , 2012, 1202.6525.
[183] A. Donnachie,et al. The soft pomeron and HERA , 1996 .
[184] Carsten Schneider,et al. Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra , 2015, Comput. Phys. Commun..
[185] F. Tkachov,et al. Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .
[186] G. Hooft. Renormalization of Massless Yang-Mills Fields , 1971 .
[187] R. Bonciani,et al. The two loop crossed ladder vertex diagram with two massive exchanges , 2007, 0705.2616.
[188] S. Radu,et al. Partition analysis, modular functions, and computer algebra , 2016 .
[189] S. Groote,et al. A numerical test of differential equations for one- and two-loop sunrise diagrams using configuration space techniques , 2012, 1204.0694.
[190] Mark van Hoeij,et al. Belyi functions for hyperbolic hypergeometric-to-Heun transformations , 2012, 1212.3803.
[191] Transformations of hypergeometric elliptic integrals , 2008, 0811.4641.
[192] Journal für die reine und angewandte Mathematik , 1893 .
[193] A. Legendre. Traité des fonctions elliptiques et des intégrales Eulériennes, avec des tables pour en faciliter le cacul numérique , 1970 .
[194] A. Sabry. Fourth order spectral functions for the electron propagator , 1962 .
[195] P. Byrd,et al. Handbook of Elliptic Integrals for Engineers and Physicists , 2014 .
[196] B. Ananthanarayan,et al. An analytic approach to sunset diagrams in chiral perturbation theory: Theory and practice , 2016, 1608.02386.
[197] E. Remiddi,et al. Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral , 2016, 1602.01481.
[198] J. Grigo,et al. Moments of heavy quark correlators with two masses: Exact mass dependence to three loops , 2012, 1206.3418.
[199] T. Apostol. Modular Functions and Dirichlet Series in Number Theory , 1976 .
[200] R. Kronig. On the Theory of Dispersion of X-Rays , 1926 .