Iterated Elliptic and Hypergeometric Integrals for Feynman Diagrams

We calculate 3-loop master integrals for heavy quark correlators and the 3-loop QCD corrections to the $\rho$-parameter. They obey non-factorizing differential equations of second order with more than three singularities, which cannot be factorized in Mellin-$N$ space either. The solution of the homogeneous equations is possible in terms of convergent close integer power series as $_2F_1$ Gau\ss{} hypergeometric functions at rational argument. In some cases, integrals of this type can be mapped to complete elliptic integrals at rational argument. This class of functions appears to be the next one arising in the calculation of more complicated Feynman integrals following the harmonic polylogarithms, generalized polylogarithms, cyclotomic harmonic polylogarithms, square-root valued iterated integrals, and combinations thereof, which appear in simpler cases. The inhomogeneous solution of the corresponding differential equations can be given in terms of iterative integrals, where the new innermost letter itself is not an iterative integral. A new class of iterative integrals is introduced containing letters in which (multiple) definite integrals appear as factors. For the elliptic case, we also derive the solution in terms of integrals over modular functions and also modular forms, using $q$-product and series representations implied by Jacobi's $\vartheta_i$ functions and Dedekind's $\eta$-function. The corresponding representations can be traced back to polynomials out of Lambert--Eisenstein series, having representations also as elliptic polylogarithms, a $q$-factorial $1/\eta^k(\tau)$, logarithms and polylogarithms of $q$ and their $q$-integrals. Due to the specific form of the physical variable $x(q)$ for different processes, different representations do usually appear. Numerical results are also presented.

[1]  Ken Ono,et al.  Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms , 2011, 1104.1182.

[2]  L. Dixon,et al.  Dimensionally-regulated pentagon integrals☆ , 1993, hep-ph/9306240.

[3]  T. DeGrand Structure functions of quarks, gluons and hadrons in quantum chromodynamics , 1979 .

[4]  R. Cutkosky Singularities and Discontinuities of Feynman Amplitudes , 1960 .

[5]  F. Beukers A Note on the Irrationality of ζ(2) and ζ(3) , 1979 .

[6]  J. Vermaseren,et al.  Harmonic Polylogarithms , 1999, hep-ph/9905237.

[7]  Ken Ono,et al.  The web of modularity : arithmetic of the coefficients of modular forms and q-series , 2003 .

[8]  Robert S. Maier On Rationally Parametrized Modular Equations , 2006 .

[9]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[10]  Kuo-Tsai Chen,et al.  Algebras of iterated path integrals and fundamental groups , 1971 .

[11]  J. Fleischer,et al.  Two-loop two-point functions with masses: asymptotic expansions and Taylor series, in any dimension , 1993 .

[12]  S. Weinzierl,et al.  The two-loop sunrise graph in two space-time dimensions with arbitrary masses in terms of elliptic dilogarithms , 2014, 1405.5640.

[13]  R. Baxter,et al.  Rogers-Ramanujan identities in the hard hexagon model , 1981 .

[14]  Stephan Herfurtner Elliptic surfaces with four singular fibres , 1991 .

[15]  A. Manteuffel,et al.  A non-planar two-loop three-point function beyond multiple polylogarithms , 2017, 1701.05905.

[16]  M. Koecher,et al.  Elliptische Funktionen und Modulformen , 1998 .

[17]  C. Schneider,et al.  The O(αs3) massive operator matrix elements of O(nf) for the structure function F2(x,Q2) and transversity , 2010, Nuclear physics. B.

[18]  Raimundas Vidunas Transformations of some Gauss hypergeometric functions , 2005 .

[19]  M. Gell-Mann,et al.  Advantages of the color octet gluon picture , 1973 .

[20]  T. Riemann,et al.  The QCD form factor of heavy quarks at NNLO , 2009, 0905.1137.

[21]  S. Weinzierl,et al.  Feynman integrals and iterated integrals of modular forms , 2017, 1704.08895.

[22]  M.Yu. Kalmykov,et al.  Massive Feynman diagrams and inverse binomial sums , 2004 .

[23]  J. Blumlein,et al.  The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function F2(x,Q2) and transversity , 2014, 1406.4654.

[24]  Imperatorskai︠a︡ Akademīi︠a︡ nauk,et al.  Novi commentarii Academiae scientiarvm imperialis petropolitanae , 2002 .

[25]  M. Gell-Mann A Schematic Model of Baryons and Mesons , 1964, Resonance.

[26]  Propriétés de l'étrangeté et une formule de masse pour les mésons vectoriels , 1965 .

[27]  Nucleon Structure, Duality and Elliptic Theta Functions , 1999, hep-ph/9912502.

[28]  An Identity Relating a Theta Function to a Sum of Lambert Series , 2001 .

[29]  Arthur Cayley XI. A memoir on the transformation of elliptic functions , 1874, Philosophical Transactions of the Royal Society of London.

[30]  F. Wilczek,et al.  Possible non-Regge behavior of electroproduction structure functions , 1974 .

[31]  O. W. Greenberg Spin and Unitary Spin Independence in a Paraquark Model of Baryons and Mesons , 1964 .

[32]  Cristian-Silviu Radu,et al.  The Andrews–Sellers family of partition congruences , 2012, Advances in mathematics.

[33]  A. von Manteuffel,et al.  Reduze 2 - Distributed Feynman Integral Reduction , 2012, 1201.4330.

[34]  Michael E. Hoffman,et al.  Quasi-Shuffle Products , 1999 .

[35]  Macdonald-type identities , 1978 .

[36]  A. Goncharov,et al.  Multiple polylogarithms, cyclotomy and modular complexes , 2011, 1105.2076.

[37]  H. Politzer,et al.  Reliable Perturbative Results for Strong Interactions , 1973 .

[38]  Stefan Weinzierl,et al.  Picard–Fuchs Equations for Feynman Integrals , 2012, 1212.4389.

[39]  L. Tancredi,et al.  Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph , 2017, 1704.05465.

[40]  J. Blumlein,et al.  Iterated Binomial Sums and their Associated Iterated Integrals , 2014, 1407.1822.

[41]  M. Böhm,et al.  Closed expressions for specific massive multiloop self-energy integrals , 1994 .

[42]  J. Blumlein,et al.  The three-loop splitting functions Pqg(2) and Pgg(2,NF) , 2017, 1705.01508.

[43]  J. A. M. Vermaseren Harmonic sums, Mellin transforms and Integrals , 1999 .

[44]  Hans Rademacher,et al.  On the Expansion of the Partition Function in a Series , 1943 .

[45]  D. Broadhurst Elliptic integral evaluation of a Bessel moment by contour integration of a lattice Green function , 2008, 0801.4813.

[46]  Carsten Schneider,et al.  Simplifying Multiple Sums in Difference Fields , 2013, ArXiv.

[47]  E. Remiddi,et al.  Schouten identities for Feynman graph amplitudes; The Master Integrals for the two-loop massive sunrise graph , 2013, 1311.3342.

[48]  G. Passarino Elliptic polylogarithms and basic hypergeometric functions , 2016, 1610.06207.

[49]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[50]  M. Eichler,et al.  Eine Verallgemeinerung der Abelschen Integrale , 1957 .

[51]  R. Vidunas Algebraic Transformations of Gauss Hypergeometric Functions , 2004, math/0408269.

[52]  J. Ablinger,et al.  Modern Summation Methods and the Computation of 2- and 3-loop Feynman Diagrams , 2010, 1006.4797.

[53]  David Broadhurst,et al.  Feynman integrals, L-series and Kloosterman moments , 2016, 1604.03057.

[54]  R. Ree,et al.  Lie Elements and an Algebra Associated With Shuffles , 1958 .

[55]  M. Steinhauser MATAD: a program package for the computation of MAssive TADpoles , 2000 .

[56]  R. Oliver Eta-quotients and theta functions , 2013 .

[57]  Carsten Schneider,et al.  Modern Summation Methods for Loop Integrals in Quantum Field Theory: The Packages Sigma, EvaluateMultiSums and SumProduction , 2013, Journal of Physics: Conference Series.

[58]  I. G. MacDonald,et al.  Affine root systems and Dedekind'sη-function , 1971 .

[59]  E. Kummer,et al.  Ueber die Transcendenten, welche aus wiederholten Integrationen rationaler Formeln entstehen. , 1840 .

[60]  Hans Rademacher,et al.  Topics in analytic number theory , 1973 .

[61]  Stefan Weinzierl,et al.  Nested sums, expansion of transcendental functions and multiscale multiloop integrals , 2002 .

[62]  É. Goursat,et al.  Sur l'équation différentielle linéaire, qui admet pour intégrale la série hypergéométrique , 1881 .

[63]  A. Atkin,et al.  Modular Forms , 2017 .

[64]  R. Bonciani,et al.  Two-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependence , 2016, 1609.06685.

[65]  C. Jacobi Über die Kreistheilung und ihre Anwendung auf die Zahlentheorie. , 1846 .

[66]  Mark van Hoeij,et al.  Hypergeometric expressions for generating functions of walks with small steps in the quarter plane , 2016, Eur. J. Comb..

[67]  Jakob Ablinger,et al.  A Computer Algebra Toolbox for Harmonic Sums Related to Particle Physics , 2010, 1011.1176.

[68]  J. Blumlein Structure functions and partondistributions in deep nelasticlepton-hadron scattering athigh energies1 , 1993 .

[69]  Stefan Weinzierl,et al.  Expansion around half-integer values, binomial sums, and inverse binomial sums , 2004, hep-ph/0402131.

[70]  Jean-Pierre Serre A Course in Arithmetic , 1973 .

[71]  Lucy Joan Slater,et al.  Generalized hypergeometric functions , 1966 .

[72]  S. Pozzorini,et al.  Precise numerical evaluation of the two loop sunrise graph Master Integrals in the equal mass case , 2006, Comput. Phys. Commun..

[74]  Margaret Nichols Trans , 2015, De-centering queer theory.

[75]  E. Hecke,et al.  Zur Theorie der elliptischen Modulfunktionen , 1927 .

[76]  F. Brown,et al.  Multiple Elliptic Polylogarithms , 2011, 1110.6917.

[77]  F. Brown,et al.  A K3 in $\phi^{4}$ , 2010, 1006.4064.

[78]  B. M. Fulk MATH , 1992 .

[79]  D. Chudnovsky,et al.  Elliptic modular functions and elliptic genera , 1988 .

[80]  A. Kotikov Differential equations method. New technique for massive Feynman diagram calculation , 1991 .

[81]  C. Jacobi,et al.  Fundamenta nova theoriae functionum ellipticarum , 1829 .

[82]  M. V. Hoeij Factoring Polynomials and the Knapsack Problem , 2002 .

[83]  David J. Broadhurst Massive 3-loop Feynman diagrams reducible to SC , 1999 .

[84]  R. Vidunas Darboux evaluations of algebraic Gauss hypergeometric functions , 2005, math/0504264.

[85]  M. Steinhauser,et al.  Corrections of to the decay of the Z boson into bottom quarks , 1997 .

[86]  Baris Kendirli Fourier Coefficients of a Class of Eta Quotients , 2016, Integers.

[87]  Crossing Probabilities and Modular Forms , 2002, math-ph/0209023.

[88]  Adrien Marie Legendre Essai sur la théorie des nombres: TABLES , 2009 .

[89]  A. Ogg,et al.  Modular forms and Dirichlet series , 1969 .

[90]  K. Hensel Journal für die reine und angewandte Mathematik , 1892 .

[91]  G. Köhler Eta Products and Theta Series Identities , 2010 .

[92]  Jacob Sturm,et al.  On the congruence of modular forms , 1987 .

[93]  H. Czyz,et al.  Numerical evaluation of the general massive 2-loop sunrise self-mass master integrals from differential equations , 2002, hep-ph/0203256.

[94]  A. Levin Elliptic polylogarithms: An analytic theory , 1997, Compositio Mathematica.

[95]  S. Weinzierl,et al.  The sunrise integral and elliptic polylogarithms , 2016, 1606.09457.

[96]  H. Hornich Elliptische Funktionen , 1899 .

[97]  S. Kurth,et al.  Harmonic sums and Mellin transforms up to two-loop order , 1999 .

[98]  J. Blumlein,et al.  Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms , 2014, 1403.1137.

[99]  J. Blumlein,et al.  The transition matrix element Agq(N) of the variable flavor number scheme at O(αs3) , 2014, 1402.0359.

[100]  R. Vidunas Transformations of algebraic Gauss hypergeometric functions , 2008, 0807.4808.

[101]  Carsten Schneider,et al.  Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials , 2011, ArXiv.

[102]  Carsten Schneider,et al.  Computer Algebra in Quantum Field Theory , 2013, Texts & Monographs in Symbolic Computation.

[103]  Karl Heun,et al.  Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten , 1888 .

[104]  Henryk Czyz,et al.  BOKASUN: A fast and precise numerical program to calculate the Master Integrals of the two-loop sunrise diagrams , 2008, Comput. Phys. Commun..

[105]  Differential equations for Feynman graph amplitudes , 1997, hep-th/9711188.

[106]  S. Weinzierl,et al.  The kite integral to all orders in terms of elliptic polylogarithms , 2016, 1607.01571.

[107]  L. Landau On analytic properties of vertex parts in quantum field theory , 1959 .

[108]  James D. Lewis,et al.  The Arithmetic and Geometry of Algebraic Cycles , 2000 .

[109]  C. Neumann Vorlesungen uber Riemann's Theorie der Abel'schen Integrale , 1884 .

[110]  E. H. Neville Mathematische Werke , 1948, Nature.

[111]  E. Remiddi,et al.  Analytic treatment of the two loop equal mass sunrise graph , 2004, hep-ph/0406160.

[112]  Mark van Hoeij,et al.  Computing Hypergeometric Solutions of Second Order Linear Differential Equations using Quotients of Formal Solutions , 2015, J. Symb. Comput..

[113]  P. Oeuvres scientifiques , 1905 .

[114]  S. Weinzierl,et al.  The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case , 2015, 1504.03255.

[115]  Henri Poincaré,et al.  Sur les groupes des équations linéaires , 1884 .

[116]  H. Movasati,et al.  Heun equations coming from geometry , 2009, 0902.0760.

[117]  S. Weinzierl,et al.  The iterated structure of the all-order result for the two-loop sunrise integral , 2015, 1512.05630.

[118]  S. Weinzierl,et al.  A second-order differential equation for the two-loop sunrise graph with arbitrary masses , 2011, 1112.4360.

[119]  D. Broadhurst The master two-loop diagram with masses , 1990 .

[120]  Carsten Schneider,et al.  Massive 3-loop Ladder Diagrams for Quarkonic Local Operator Matrix Elements , 2012, 1206.2252.

[121]  Paul Roman,et al.  The Analytic S-Matrix , 1967 .

[122]  Christian Bogner,et al.  The two-loop sunrise graph with arbitrary masses , 2013, 1302.7004.

[123]  Carsten Schneider,et al.  The Method of Arbitrarily Large Moments to Calculate Single Scale Processes in Quantum Field Theory , 2017, Physics Letters B.

[124]  Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.

[125]  S. Moch,et al.  The third-order QCD corrections to deep-inelastic scattering by photon exchange , 2005, hep-ph/0504242.

[126]  M.N.H. Abel Recherches sur les fonctions elliptiques. , 1827 .

[127]  G. Hardy,et al.  Asymptotic Formulaæ in Combinatory Analysis , 1918 .

[128]  Frank Garvan A q -product Tutorial for a q -series Maple Package , 1998, WWW 1998.

[129]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[130]  Carsten Schneider,et al.  Recent Symbolic Summation Methods to Solve Coupled Systems of Differential and Difference Equations , 2014, ArXiv.

[131]  I. Zucker A systematic way of converting infinite series into infinite products , 1987 .

[132]  E. E. Kummer Über die hypergeometrische Reihe . (Fortsetzung). , 1836 .

[133]  V. Kac Infinite-dimensional algebras, Dedekind's η-function, classical möbius function and the very strange formula , 1978 .

[134]  Johannes Blümlein,et al.  Algebraic relations between harmonic sums and associated quantities , 2004 .

[135]  E. Zermelo,et al.  Gesammelte Werke. , 1959, Science.

[136]  I. Zucker Further relations amongst infinite series and products. II. The evaluation of three-dimensional lattice sums , 1990 .

[137]  R. Agarwal,et al.  Lambert series and Ramanujan , 1993 .

[138]  P. Vanhove,et al.  Local mirror symmetry and the sunset Feynman integral , 2016, 1601.08181.

[139]  J. A. M. Vermaseren,et al.  The Multiple Zeta Value data mine , 2009, Comput. Phys. Commun..

[140]  R. Vidunas Transformations and invariants for dihedral Gauss hypergeometric functions , 2011, 1101.3688.

[141]  F. Wilczek,et al.  Ultraviolet Behavior of Non-Abelian Gauge Theories , 1973 .

[142]  J. Blumlein,et al.  Generalized Harmonic, Cyclotomic, and Binomial Sums, their Polylogarithms and Special Numbers , 2013, 1310.5645.

[143]  A. Hurwitz Grundlagen einer independenten Theorie der elliptischen Modulfunctionen und Theorie der Multiplicatorgleichungen erster Stufe , 1881 .

[144]  B. Kniehl,et al.  Two-loop sunset diagrams with three massive lines , 2005, hep-ph/0510235.

[145]  P. Stevenhagen,et al.  ELLIPTIC FUNCTIONS , 2022 .

[146]  Calculation of two-loop self-energies in the electroweak Standard Model , 1994, hep-ph/9406404.

[147]  R. Zwicky A brief Introduction to Dispersion Relations and Analyticity , 2016, 1610.06090.

[148]  Fred Diamond,et al.  A First Course in Modular Forms , 2008 .

[149]  Felix Klein,et al.  Vorlesungen über die Theorie der elliptischen Modulfunktionen , 1966 .

[150]  A. Polyakov,et al.  Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .

[151]  Carlos R Mafra,et al.  Elliptic multiple zeta values and one-loop superstring amplitudes , 2014, 1412.5535.

[152]  Stefano Forte,et al.  A Direct Test of Perturbative QCD at Small x , 1994, hep-ph/9406385.

[153]  Don Zagier,et al.  The Bloch-Wigner-Ramakrishnan polylogarithm function , 1990 .

[154]  D. Broadhurst Three-loop on-shell charge renormalization without integration: $$\Lambda _{QED}^{\overline {MS} } $$ to four loops , 1992 .

[155]  Jakob Ablinger,et al.  Computer Algebra Algorithms for Special Functions in Particle Physics , 2013, 1305.0687.

[156]  A. von Manteuffel,et al.  The 3-loop pure singlet heavy flavor contributions to the structure function F2(x,Q2) and the anomalous dimension , 2014, 1409.1135.

[157]  Z. Bern,et al.  Dimensionally regulated one-loop integrals , 1993 .

[158]  M. Veltman Unitarity and causality in a renormalizable field theory with unstable particles , 1963 .

[159]  C. Studerus,et al.  Reduze - Feynman integral reduction in C++ , 2009, Comput. Phys. Commun..

[160]  Marko Petkovsek,et al.  Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..

[161]  H. Lehmann Über Eigenschaften von Ausbreitungsfunktionen und Renormierungskonstanten quantisierter Felder , 1954 .

[162]  S. Bauberger,et al.  Simple one-dimensional integral representations for two-loop self-energies: the master diagram , 1995 .

[163]  Johannes Blumlein,et al.  Mellin moments of the O(αs3) heavy flavor contributions to unpolarized deep-inelastic scattering at Q2≫m2 and anomalous dimensions , 2009, 0904.3563.

[164]  Carsten Schneider,et al.  Evaluation of Multi-Sums for Large Scale Problems , 2012, ArXiv.

[165]  Jonathan M. Borwein,et al.  A cubic counterpart of Jacobi’s identity and the AGM , 1991 .

[166]  Y. Martin MULTIPLICATIVE ETA -QUOTIENTS , 1996 .

[167]  B. Gordon SOME IDENTITIES IN COMBINATORIAL ANALYSIS , 1961 .

[168]  A. Bostan,et al.  Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity , 2012, 1211.6031.

[169]  Carsten Schneider,et al.  Analytic and Algorithmic Aspects of Generalized Harmonic Sums and Polylogarithms , 2013, Journal of Mathematical Physics.

[170]  L. Tancredi,et al.  On the maximal cut of Feynman integrals and the solution of their differential equations , 2016, 1610.08397.

[171]  S. Laporta,et al.  difference equations , 2001 .

[172]  On the evaluation of a certain class of Feynman diagrams in x-space: Sunrise-type topologies at any loop order , 2005, hep-ph/0506286.

[173]  N. H. Abel Remarques sur quelques propriétés générales d'une certaine sorte de fonctions transcendantes. , 1828 .

[174]  P. Vanhove,et al.  The elliptic dilogarithm for the sunset graph , 2013, 1309.5865.

[175]  Carsten Schneider,et al.  The $O(\alpha_s^3 n_f T_F^2 C_{A,F})$} Contributions to the Gluonic Massive Operator Matrix Elements , 2012, 1205.4184.

[176]  R. Vidunas DIHEDRAL GAUSS HYPERGEOMETRIC FUNCTIONS , 2008, 0807.4888.

[177]  P. Vanhove,et al.  A Feynman integral via higher normal functions , 2014, Compositio Mathematica.

[178]  Jonathan M. Borwein,et al.  Elliptic integral evaluations of Bessel moments and applications , 2008, 0801.0891.

[179]  Moritz Katz Mathematische Abhandlungen , 1916 .

[180]  I. Bierenbaum,et al.  The logarithmic contributions to the $$O(\alpha _s^3)$$O(αs3) asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering , 2014, 1403.6356.

[181]  R. Feynman Space - time approach to quantum electrodynamics , 1949 .

[182]  Jörg Arndt On computing the generalized Lambert series , 2012, 1202.6525.

[183]  A. Donnachie,et al.  The soft pomeron and HERA , 1996 .

[184]  Carsten Schneider,et al.  Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra , 2015, Comput. Phys. Commun..

[185]  F. Tkachov,et al.  Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .

[186]  G. Hooft Renormalization of Massless Yang-Mills Fields , 1971 .

[187]  R. Bonciani,et al.  The two loop crossed ladder vertex diagram with two massive exchanges , 2007, 0705.2616.

[188]  S. Radu,et al.  Partition analysis, modular functions, and computer algebra , 2016 .

[189]  S. Groote,et al.  A numerical test of differential equations for one- and two-loop sunrise diagrams using configuration space techniques , 2012, 1204.0694.

[190]  Mark van Hoeij,et al.  Belyi functions for hyperbolic hypergeometric-to-Heun transformations , 2012, 1212.3803.

[191]  Transformations of hypergeometric elliptic integrals , 2008, 0811.4641.

[192]  Journal für die reine und angewandte Mathematik , 1893 .

[193]  A. Legendre Traité des fonctions elliptiques et des intégrales Eulériennes, avec des tables pour en faciliter le cacul numérique , 1970 .

[194]  A. Sabry Fourth order spectral functions for the electron propagator , 1962 .

[195]  P. Byrd,et al.  Handbook of Elliptic Integrals for Engineers and Physicists , 2014 .

[196]  B. Ananthanarayan,et al.  An analytic approach to sunset diagrams in chiral perturbation theory: Theory and practice , 2016, 1608.02386.

[197]  E. Remiddi,et al.  Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral , 2016, 1602.01481.

[198]  J. Grigo,et al.  Moments of heavy quark correlators with two masses: Exact mass dependence to three loops , 2012, 1206.3418.

[199]  T. Apostol Modular Functions and Dirichlet Series in Number Theory , 1976 .

[200]  R. Kronig On the Theory of Dispersion of X-Rays , 1926 .