A unified radon inversion formula

A Radon inversion formula which holds in spaces of even or odd dimension n is obtained for functions which admit to a certain general decomposition. The inversion formula which is one member of a Gegenbauer transform pair is used to generate some interesting definite integrals involving special functions. Legendre and Tchebycheff transform pairs are discussed as special cases of the general result.

[1]  F. John Bestimmung einer Funktion aus ihren Integralen Über gewisse Mannigfaltigkeiten , 1934 .

[2]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[3]  T. Broadbent Mathematics for the Physical Sciences , 1959, Nature.

[4]  An Inversion Integral for a Gegenbauer Transformation , 1963 .

[5]  Theodore P. Higgins A Hypergeometric Function Transform , 1964 .

[6]  A. Erdélyi,et al.  An Integral Equation Involving Legendre Functions , 1964 .

[7]  Sigurdur Helgason,et al.  The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds , 1965 .

[8]  A procedure for deriving inversion formulae for integral transform pairs of a general kind , 1968 .

[9]  Harry Hochstadt,et al.  The functions of mathematical physics , 1972 .

[10]  T. Budinger,et al.  Three-dimensional reconstruction in nuclear medicine emission imaging , 1974 .

[11]  G. Herman,et al.  Three-dimensional reconstruction from projections: a review of algorithms. , 1974, International review of cytology.

[12]  R. A. Brooks,et al.  Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging , 1976, Physics in medicine and biology.

[13]  P. Fishbane,et al.  Expansion formulas and addition theorems for Gegenbauer functions , 1976 .

[14]  Kennan T. Smith,et al.  Practical and mathematical aspects of the problem of reconstructing objects from radiographs , 1977 .

[15]  J. Dieudonne,et al.  Encyclopedic Dictionary of Mathematics , 1979 .