Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum

[1]  Jianping Zhang,et al.  Effects of aggregation on the excitation dynamics of LH2 from Thermochromatium tepidum in aqueous phase and in chromatophores. , 2011, The journal of physical chemistry. B.

[2]  Robert Eugene Blankenship,et al.  Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum , 2011, Photosynthesis Research.

[3]  Robert Eugene Blankenship,et al.  Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls , 2010, Photosynthesis Research.

[4]  M. M. Enriquez,et al.  Ultrafast Time-resolved Absorption Spectroscopy of Geometric Isomers of Xanthophylls. , 2010, Chemical physics.

[5]  X. Ai,et al.  Excitation dynamics of the light-harvesting complex 2 from Thermochromatium Tepidum , 2010 .

[6]  R. Cogdell,et al.  Using narrowband excitation to confirm that the S∗ state in carotenoids is not a vibrationally-excited ground state species , 2010 .

[7]  S. Chekalin,et al.  Two-photon excitation spectroscopy of carotenoid-containing and carotenoid-depleted LH2 complexes from purple bacteria. , 2009, The journal of physical chemistry. B.

[8]  Jianping Zhang,et al.  Specific Ca2+‐binding motif in the LH1 complex from photosynthetic bacterium Thermochromatium tepidum as revealed by optical spectroscopy and structural modeling , 2009, The FEBS journal.

[9]  Daniel J. Sandberg,et al.  Ultrafast time-resolved absorption spectroscopy of geometric isomers of carotenoids. , 2009, Chemical physics.

[10]  M. Bolshakov,et al.  Heterogeneity of carotenoid content and composition in LH2 of the purple sulphur bacterium Allochromatium minutissimum grown under carotenoid-biosynthesis inhibition , 2008, Photosynthesis Research.

[11]  J. Verbavatz,et al.  The peripheral light‐harvesting complexes from purple sulfur bacteria have different ‘ring’ sizes , 2008, FEBS letters.

[12]  Jianping Zhang,et al.  Excitation dynamics of two spectral forms of the core complexes from photosynthetic bacterium Thermochromatium tepidum. , 2008, Biophysical journal.

[13]  D. Niedzwiedzki,et al.  Ultrafast time-resolved carotenoid to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria. , 2008, The journal of physical chemistry. B.

[14]  H. Eichler,et al.  Femtosecond spectroscopy of native and carotenoidless purple-bacterial LH2 clarifies functions of carotenoids. , 2008, Biophysical journal.

[15]  R. Cogdell,et al.  Comparison of the fluorescence kinetics of detergent-solubilized and membrane-reconstituted LH2 complexes from Rps. acidophila and Rb. sphaeroides , 2008, Photosynthesis Research.

[16]  Jeremy F. Koscielecki,et al.  Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures. , 2007, The journal of physical chemistry. B.

[17]  W. Wohlleben,et al.  Pump-probe and pump-deplete-probe spectroscopies on carotenoids with N=9-15 conjugated bonds. , 2006, The Journal of chemical physics.

[18]  R. Birge,et al.  Femtosecond time-resolved transient absorption spectroscopy of xanthophylls. , 2006, The journal of physical chemistry. B.

[19]  Amitava Das,et al.  Ultrafast dynamics and excited state deactivation of [Ru(bpy)2Sq]+ and its derivatives. , 2006, The journal of physical chemistry. B.

[20]  Mikas Vengris,et al.  Excited-state dynamics of carotenoids in light-harvesting complexes. 1. Exploring the relationship between the S1 and S* states. , 2006, The journal of physical chemistry. B.

[21]  H. Frank,et al.  Effect of isomer geometry on the steady-state absorption spectra and femtosecond time-resolved dynamics of carotenoids. , 2005, The journal of physical chemistry. B.

[22]  Subrata Sinha,et al.  Excited-state processes in the carotenoid zeaxanthin after excess energy excitation. , 2005, The journal of physical chemistry. A.

[23]  Lei Zhang,et al.  Protein structural deformation induced lifetime shortening of photosynthetic bacteria light-harvesting complex LH2 excited state. , 2005, Biophysical journal.

[24]  Hiroaki Suzuki,et al.  Reconstitution of Photosynthetic Reaction Centers and Core Antenna-Reaction Center Complexes in Liposomes and Their Thermal Stability , 2005, Bioscience, biotechnology, and biochemistry.

[25]  Y. Koyama,et al.  Carotenoid-induced cooperative formation of bacterial photosynthetic LH1 complex. , 2004, Biochemistry.

[26]  Rienk van Grondelle,et al.  Global and target analysis of time-resolved spectra. , 2004, Biochimica et biophysica acta.

[27]  R. Cogdell,et al.  Pump-deplete-probe spectroscopy and the puzzle of carotenoid dark states , 2004 .

[28]  Delmar S. Larsen,et al.  Excited state dynamics of β-carotene explored with dispersed multi-pulse transient absorption , 2003 .

[29]  N. Woodbury,et al.  Self-Trapped Excitons in LH2 Antenna Complexes between 5 K and Ambient Temperature , 2003 .

[30]  V. Sundström,et al.  A Near-Infrared Transient Absorption Study of the Excited-State Dynamics of the Carotenoid Spirilloxanthin in Solution and in the LH1 Complex of Rhodospirillum rubrum. , 2003 .

[31]  P. Bernstein,et al.  Photophysical Properties of Xanthophylls in Carotenoproteins from Human Retina¶ , 2003, Photochemistry and photobiology.

[32]  Marcus Motzkus,et al.  Multichannel carotenoid deactivation in photosynthetic light harvesting as identified by an evolutionary target analysis. , 2003, Biophysical journal.

[33]  V. Sundström,et al.  The carotenoid S-1 state in LH2 complexes from purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas acidophila: S-1 energies, dynamics, and carotenoid radical formation , 2002 .

[34]  Rienk van Grondelle,et al.  An alternative carotenoid-to-bacteriochlorophyll energy transfer pathway in photosynthetic light harvesting , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  V. Sundström,et al.  Dynamics of energy transfer from lycopene to bacteriochlorophyll in genetically-modified LH2 complexes of Rhodobacter sphaeroides. , 2002, Biochemistry.

[36]  G. Fleming,et al.  An unusual pathway of excitation energy deactivation in carotenoids: Singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  T. Gillbro,et al.  Efficient energy transfer from the carotenoid S(2) state in a photosynthetic light-harvesting complex. , 2001, Biophysical journal.

[38]  V. Sundström,et al.  Near-infrared time-resolved study of the S-1 state dynamics of the carotenoid spheroidene , 2001 .

[39]  T. Inaba,et al.  Mechanism of the Carotenoid-to-Bacteriochlorophyll Energy Transfer via the S1 State in the LH2 Complexes from Purple Bacteria , 2000 .

[40]  M. Michel-beyerle,et al.  TIME-RESOLVED SPECTRAL INVESTIGATION OF BACTERIOCHLOROPHYLL A AND ITS TRANSMETALATED DERIVATIVES ZN-BACTERIOCHLOROPHYLL A AND PD-BACTERIOCHLOROPHYLL A , 1998 .

[41]  T. Nakabayashi,et al.  Sub-picosecond excited-state dynamics of a carotenoid (spirilloxanthin) in the light-harvesting systems of Chromatium vinosum. , 1998 .

[42]  T. Nozawa,et al.  The B800–850 complex of the purple bacterium Chromatium tepidum: low-temperature absorption and Stark spectra , 1998 .

[43]  T. Gillbro,et al.  Solvent Dependence of the Ultrafast S2−S1 Internal Conversion Rate of β-Carotene , 1998 .

[44]  M. A. Bopp,et al.  Fluorescence and photobleaching dynamics of single light-harvesting complexes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. Monshouwer,et al.  Superradiance and Exciton Delocalization in Bacterial Photosynthetic Light-Harvesting Systems , 1997 .

[46]  M. Wasielewski,et al.  Spectroscopic Properties of Spheroidene Analogs Having Different Extents of π-Electron Conjugation , 1997 .

[47]  J. Kennis,et al.  Energy Transfer and Exciton Coupling in Isolated B800−850 Complexes of the Photosynthetic Purple Sulfur Bacterium Chromatium tepidum. The Effect of Structural Symmetry on Bacteriochlorophyll Excited States , 1996 .

[48]  T. Gillbro,et al.  Photophysics and dynamics of the lowest excited singlet state in long substituted polyenes with implications to the very long‐chain limit , 1995 .

[49]  M. Madigan,et al.  Organization of intracytoplasmic membranes in a novel thermophilic purple photosynthetic bacterium as revealed by absorption, circular dichroism and emission spectra , 1986 .

[50]  M. Madigan Chromatium tepidum sp. nov. a Thermophilic Photosynthetic Bacterium of the Family Chromatiaceae , 1986 .

[51]  R. Cogdell,et al.  CIRCULAR DICHROISM OF LIGHT‐HARVESTING COMPLEXES FROM PURPLE PHOTOSYNTHETIC BACTERIA * , 1985 .

[52]  D. McClure,et al.  Excited state dynamics of NaF:Cu+ , 1984 .

[53]  M. Madigan A Novel Photosynthetic Purple Bacterium Isolated from a Yellowstone Hot Spring , 1984, Science.

[54]  A. F. Janzen,et al.  EFFECTS OF SOLVENT ON THE FLUORESCENCE PROPERTIES OF BACTERIOCHLOROPHYLL a , 1982 .

[55]  H. Hayashi,et al.  Circular dichroism of bacteriochlorophyll a in light harvesting bacteriochlorophyll protein complexes from Chromatium vinosum. , 1981, Journal of biochemistry.