A recursive least-squares algorithm for on-line 1-D inverse heat conduction estimation

The recursive least-squares algorithm was adopted to investigate the estimation of surface heat flux of inverse heat conduction problem from experimental data. The Kalman filtering technique which accounted for the residual innovation sequence and the least-squares estimation which accounted for computing heat flux was introduced to treat one-dimensional inverse heat conduction problem. By virtue of recursive algorithm, an on-line estimation can be made in place of batch form off-line estimation. The method is adequate for impulse heat flux estimation.

[1]  M. Farooq,et al.  Comments on "Tracking a maneuvering target using input estimation , 1989 .

[2]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[3]  A. J. Silva Neto,et al.  Simultaneous Estimation of Location and Timewise-Varying Strength of a Plane Heat Source , 1993 .

[4]  M. N. Özişik,et al.  An inverse analysis for estimating the time-varying inlet temperature in laminar flow inside a parallel plate duct , 1995 .

[5]  Cheng-Hung Huang,et al.  Inverse problem of determining the unknown strength of an internal plane heat source , 1992 .

[6]  M. Hou,et al.  Comments on "Tracking a maneuvering target using input estimation , 1989 .

[7]  E. Sparrow,et al.  The Inverse Problem in Transient Heat Conduction , 1964 .

[8]  Y. Chan,et al.  A Kalman Filter Based Tracking Scheme with Input Estimation , 1979, IEEE Transactions on Aerospace and Electronic Systems.

[9]  J. Beck Surface heat flux determination using an integral method , 1968 .

[10]  James V. Beck,et al.  Inverse Heat Conduction , 2023 .

[11]  J. Beck Nonlinear estimation applied to the nonlinear inverse heat conduction problem , 1970 .

[12]  Li-Wei Fong,et al.  AN INPUT ESTIMATION APPROACH TO ON-LINE TWO-DIMENSIONAL INVERSE HEAT CONDUCTION PROBLEMS , 1996 .

[13]  Yvon Jarny,et al.  A General Optimization Method using Adjoint Equation for Solving Multidimensional Inverse Heat Conduction , 1991 .

[14]  B. F. Blackwell,et al.  EFFICIENT TECHNIQUE FOR THE NUMERICAL SOLUTION OF THE ONE-DIMENSIONAL INVERSE PROBLEM OF HEAT CONDUCTION , 1981 .

[15]  P. Bogler Tracking a Maneuvering Target Using Input Estimation , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[16]  James V. Beck,et al.  DETERMINATION OF UNDISTURBED TEMPERATURES FROM THERMOCOUPLE MEASUREMENTS USING CORRECTION KERNELS. , 1968 .

[17]  G. Stolz Numerical Solutions to an Inverse Problem of Heat Conduction for Simple Shapes , 1960 .

[18]  Jerry M. Mendel,et al.  Lessons in digital estimation theory , 1986 .

[19]  Murray Imber,et al.  Prediction of Transient Temperature Distributions with Embedded Thermocouples , 1972 .

[20]  O. M. Alifanov,et al.  Solution of the nonlinear inverse thermal conductivity problem by the iteration method , 1978 .