Williamson-Hall anisotropy in nanocrystalline metals : X-ray diffraction experiments and atomistic simulations

Abstract X-ray diffraction techniques allow the determination of mean grain size, root-mean-square strain and dislocation/twin content through peak profile analysis and the Williamson–Hall approach. The analysis is, however, based on assumptions that are questionable when applied to nanocrystalline (nc) structures. In the present work, two-theta X-ray diffraction profiles are calculated from multi-million atom computer-generated nc-Al samples containing a well-defined twin or dislocation content. The Williamson–Hall plots are compared with those obtained from in situ X-ray experiments performed on electrodeposited nc-Ni and on nc-Cu data available in the literature.

[1]  N. Armstrong,et al.  A maximum entropy method for determining column-length distributions from size-broadened X-ray diffraction profiles , 1999 .

[2]  H. V. Swygenhoven,et al.  Grain boundary migration during room temperature deformation of nanocrystalline Ni , 2006 .

[3]  M. A. Krivoglaz X-Ray and Neutron Diffraction in Nonideal Crystals , 1996 .

[4]  B. Schmitt,et al.  Following peak profiles during elastic and plastic deformation: A synchrotron-based technique , 2006 .

[5]  D. Reefman,et al.  X-ray diffraction analysis of stacking and twin faults in f.c.c. metals: a revision and allowance for texture and non-uniform fault probabilities , 2000 .

[6]  C. Koch,et al.  Nanostructured Materials: Processing Properties, and Potential Applications , 2002 .

[7]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[8]  H. V. Swygenhoven,et al.  Atomic mechanism for dislocation emission from nanosized grain boundaries , 2002 .

[9]  H. V. Swygenhoven,et al.  On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: a molecular dynamics computer simulation , 2002 .

[10]  H. V. Swygenhoven,et al.  Grain Boundaries and Dislocations , 2002 .

[11]  P. Sanders,et al.  Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis , 1998 .

[12]  Peter M. Derlet,et al.  Atomistic simulations as guidance to experiments , 2003 .

[13]  J. Weertman,et al.  Mechanical behavior of nanocrystalline metals , 1992 .

[14]  H. V. Swygenhoven,et al.  Nucleation and propagation of dislocations in nanocrystalline fcc metals , 2006 .

[15]  T. Ungár,et al.  Dislocations and Grain Size in Electrodeposited Nanocrystalline Ni Determined by the Modified Williamson–Hall and Warren–Averbach Procedures , 1998 .

[16]  R. Birringer,et al.  Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis , 1998 .

[17]  Xiaolei Wu,et al.  Deformation defects in nanocrystalline nickel , 2007 .

[18]  T. J. Delph,et al.  Stress calculation in atomistic simulations of perfect and imperfect solids , 2001 .

[19]  M. Victoria,et al.  Nanocrystalline electrodeposited Ni: microstructure and tensile properties , 2002 .

[20]  H. V. Swygenhoven,et al.  Grain coarsening during compression of bulk nanocrystalline nickel and copper , 2008 .

[21]  S. Brandstetter,et al.  From Micro‐ to Macroplasticity , 2006 .

[22]  Peter M. Derlet,et al.  Calculation of x-ray spectra for nanocrystalline materials , 2005 .

[23]  B. Warren,et al.  The Effect of Cold‐Work Distortion on X‐Ray Patterns , 1950 .

[24]  Subra Suresh,et al.  Mechanical behavior of nanocrystalline metals and alloys , 2003 .

[25]  A. Borbély,et al.  Variance method for the evaluation of particle size and dislocation density from x-ray Bragg peaks , 2001 .

[26]  Peter M. Derlet,et al.  The influence of twins on the mechanical properties of nc-Al , 2004 .

[27]  B. Warren,et al.  X-Ray Diffraction , 2014 .

[28]  Xiaolei Wu,et al.  Dislocations in nanocrystalline grains , 2006 .

[29]  L. Alexander,et al.  X-Ray diffraction procedures for polycrystalline and amorphous materials , 1974 .

[30]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[31]  B. Warren X‐Ray Measurement of Stacking Fault Widths in fcc Metals , 1961 .

[32]  E. J. Mittemeijer,et al.  Diffraction analysis of the microstructure of materials , 2004 .

[33]  B. Warren,et al.  The Separation of Cold‐Work Distortion and Particle Size Broadening in X‐Ray Patterns , 1952 .

[34]  T. Nieh,et al.  Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni , 2004 .

[35]  B. Schmitt,et al.  Plastic Deformation with Reversible Peak Broadening in Nanocrystalline Nickel , 2004, Science.

[36]  M. Wilkens,et al.  Die bestimmung der versetzungsdichte verformter kupfereinkristalle aus verbreiterten röntgenbeugungsprofilen , 1968 .

[37]  A. Borbely,et al.  The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice , 1999 .

[38]  J. Hirth,et al.  Theory of Dislocations (2nd ed.) , 1983 .

[39]  F. Székely,et al.  Analysis of the asymptotic properties of X-ray line broadening caused by dislocations , 2000 .