Strained Silicon Nanodevices

[1]  Manfred Horstmann,et al.  Understanding Strain-Induced Drive-Current Enhancement in Strained-Silicon n-MOSFET and p-MOSFET , 2010, IEEE Transactions on Electron Devices.

[2]  Width and orientation effects in strained FDSOI MOSFETs: strain and device characterization , 2009, 2009 Proceedings of the European Solid State Device Research Conference.

[3]  S. Selberherr,et al.  Modeling of modern MOSFETs with strain , 2009 .

[4]  R. Kotlyar,et al.  Modeling the effects of applied stress and wafer orientation in silicon devices: from long channel mobility physics to short channel performance , 2009 .

[5]  Scott E. Thompson,et al.  Strain: A Solution for Higher Carrier Mobility in Nanoscale MOSFETs , 2009 .

[6]  Piezoresistive coefficients of {110} silicon-on-insulator MOSFETs with 0.135/0.45/10 micrometers channel length with external forces , 2009 .

[7]  M. Reiche,et al.  The complex evolution of strain during nanoscale patterning of 60 nm thick strained silicon layer directly on insulator , 2009 .

[8]  Variation of Threshold Voltage in Strained Si Metal–Oxide–Semiconductor Field-Effect Transistors Induced by Non-uniform Strain Distribution in Strained-Si Channels on Silicon–Germanium-on-Insulator Substrates , 2008 .

[9]  Scott E. Thompson,et al.  Comparison between high-field piezoresistance coefficients of Si metal-oxide-semiconductor field-effect transistors and bulk Si under uniaxial and biaxial stress , 2008 .

[10]  G. Ghibaudo,et al.  Conventional Technological Boosters for Injection Velocity in Ultrathin-Body MOSFETs , 2007, IEEE Transactions on Nanotechnology.

[11]  M. Reiche,et al.  Compressive uniaxially strained silicon on insulator by prestrained wafer bonding and layer transfer , 2007 .

[12]  S. Takagi Strained-Si CMOS Technology , 2007 .

[13]  J. Conner,et al.  Strain-Enhanced CMOS Through Novel Process-Substrate Stress Hybridization of Super-Critically Thick Strained Silicon Directly on Insulator (SC-SSOI) , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[14]  Osama M. Nayfeh,et al.  Continuous MOSFET performance increase with device scaling: The role of strain and channel material innovations , 2006, IBM J. Res. Dev..

[15]  G. Ghibaudo,et al.  New experimental insight into ballisticity of transport in strained bulk MOSFETs , 2006, 2009 Symposium on VLSI Technology.

[16]  Yee-Chia Yeo,et al.  Enhancing CMOS transistor performance using lattice-mismatched materials in source/drain regions , 2006, 2006 International SiGe Technology and Device Meeting.

[17]  M. Lee,et al.  Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors , 2005 .

[18]  G. Burbach,et al.  Dual stress liner for high performance sub-45nm gate length SOI CMOS manufacturing , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[19]  S. Thompson,et al.  Key differences for process-induced uniaxial vs. substrate-induced biaxial stressed Si and Ge channel MOSFETs , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[20]  E.J. Nowak,et al.  Turning silicon on its edge [double gate CMOS/FinFET technology] , 2004, IEEE Circuits and Devices Magazine.

[21]  P. Solomon,et al.  Six-band k⋅p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness , 2003 .

[22]  James L. Speidell,et al.  Electron and hole mobility enhancement in strained SOI by wafer bonding , 2002 .

[23]  D. Antoniadis,et al.  Investigating the relationship between electron mobility and velocity in deeply scaled NMOS via mechanical stress , 2001, IEEE Electron Device Letters.

[24]  Shinichi Takagi,et al.  Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction , 2001 .

[25]  Rona E. Belford Uniaxial, tensile-strained Si devices , 2001 .

[26]  M. Lundstrom On the mobility versus drain current relation for a nanoscale MOSFET , 2001, IEEE Electron Device Letters.

[27]  S. Laux,et al.  Performance degradation of small silicon devices caused by long-range Coulomb interactions , 2000 .

[28]  S. Laux,et al.  Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .

[29]  J. Welser,et al.  Comparative study of phonon‐limited mobility of two‐dimensional electrons in strained and unstrained Si metal–oxide–semiconductor field‐effect transistors , 1996 .

[30]  T. Vogelsang,et al.  Electron transport in strained Si layers on Si1−xGex substrates , 1993 .

[31]  Gerhard Abstreiter,et al.  High-electron-mobility Si/SiGe heterostructures: influence of the relaxed SiGe buffer layer , 1992 .

[32]  M. S. Singh,et al.  Influence of substrate composition and crystallographic orientation on the band structure of pseudomorphic Si-Ge alloy films. , 1990, Physical review. B, Condensed matter.

[33]  Yozo Kanda,et al.  Graphical Representation of the Piezoresistance Coefficients in Silicon-Shear Coefficients in Plane , 1987 .

[34]  J.S. Kilby,et al.  Invention of the integrated circuit , 1976, IEEE Transactions on Electron Devices.

[35]  D. Colman,et al.  Mobility Anisotropy and Piezoresistance in Silicon p‐Type Inversion Layers , 1968 .

[36]  I. Balslev,et al.  Influence of Uniaxial Stress on the Indirect Absorption Edge in Silicon and Germanium , 1966 .

[37]  M. Nakayama Effects of Homogeneous Deformation on Band Structure of Semiconductors , 1965 .

[38]  G. Feher,et al.  Cyclotron Resonance Experiments in Uniaxially Stressed Silicon: Valence Band Inverse Mass Parameters and Deformation Potentials , 1963 .

[39]  H. Hasegawa,et al.  Theory of Cyclotron Resonance in Strained Silicon Crystals , 1963 .

[40]  C. Herring,et al.  Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering , 1956 .

[41]  Charles S. Smith Piezoresistance Effect in Germanium and Silicon , 1954 .

[42]  J. Bardeen,et al.  Deformation Potentials and Mobilities in Non-Polar Crystals , 1950 .

[43]  John Bardeen,et al.  Physical principles involved in transistor action , 1949, Bell Syst. Tech. J..