Solving linear and non‐linear space–time fractional reaction–diffusion equations by the Adomian decomposition method

In this paper, we consider linear and non-linear space-time fractional reaction-diffusion equations (STFRDE) on a finite domain. The equations are obtained from standard reaction-diffusion equations by replacing a second-order space derivative by a fractional derivative of order β ∈ (1, 2], and a first-order time derivative by a fractional derivative of order α ∈ (0, 1]. We use the Adomian decomposition method to construct explicit solutions of the linear and non-linear STFRDE. Finally, some examples are given.

[1]  D. Benson,et al.  Multidimensional advection and fractional dispersion. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Fawang Liu,et al.  Implicit difference approximation for the time fractional diffusion equation , 2006 .

[3]  J. P. Roop Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .

[4]  Fawang Liu,et al.  Numerical simulation for solute transport in fractal porous media , 2004 .

[5]  M. Meerschaert,et al.  Space-time fractional derivative operators , 2005 .

[6]  Hossein Jafari,et al.  Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition , 2006, Appl. Math. Comput..

[7]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[8]  Katja Lindenberg,et al.  Reaction front in an A+B-->C reaction-subdiffusion process. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Kazuhiko Seki,et al.  Fractional reaction-diffusion equation , 2003 .

[10]  I. Turner,et al.  Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation , 2005 .

[11]  Kamel Al-khaled,et al.  Numerical solutions for systems of fractional differential equations by the decomposition method , 2005, Appl. Math. Comput..

[12]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[13]  Fawang Liu,et al.  Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends , 2005 .

[14]  Stephen R. Baillie,et al.  Modeling large-scale dispersal distances , 2002 .

[15]  Fawang Liu,et al.  Fractional high order methods for the nonlinear fractional ordinary differential equation , 2007 .

[16]  Y. Cherruault Convergence of Adomian's method , 1989 .

[17]  Y. Cherruault,et al.  Decomposition methods: A new proof of convergence , 1993 .

[18]  Hans-Peter Scheffler,et al.  Stochastic solution of space-time fractional diffusion equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Fawang Liu,et al.  Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method , 2007, J. Comput. Phys..

[20]  G. Adomian A review of the decomposition method in applied mathematics , 1988 .

[21]  S B Yuste,et al.  Subdiffusion-limited A+A reactions. , 2001, Physical review letters.

[22]  S. Wearne,et al.  Fractional Reaction-Diffusion , 2000 .