Oscillatory States of Quantum Kapitza Pendulum
暂无分享,去创建一个
[1] P. Golovinski,et al. Quantum States of the Kapitza Pendulum , 2021, Russian Physics Journal.
[2] H. Ott,et al. A Kapitza Pendulum for Ultracold Atoms , 2021, 2112.10954.
[3] G. Fiete,et al. Low-frequency and Moiré–Floquet engineering: A review , 2021 .
[4] C. Weitenberg,et al. Tailoring quantum gases by Floquet engineering , 2021, Nature Physics.
[5] T. Mckeown. Mechanics , 1970, The Mathematics of Fluid Flow Through Porous Media.
[6] Wei He. Spectra of elliptic potentials and supersymmetric gauge theories , 2019, Journal of High Energy Physics.
[7] S. Vongehr,et al. Solitons , 2020, Encyclopedia of Continuum Mechanics.
[8] T. Oka,et al. Floquet Engineering of Quantum Materials , 2018, Annual Review of Condensed Matter Physics.
[9] A. Gambassi,et al. Prethermal quantum many-body Kapitza phases of periodically driven spin systems , 2018, Physical Review B.
[10] Christopher J. Richards,et al. A microscopic Kapitza pendulum , 2018, Scientific Reports.
[11] Wei He. A New Treatment for Some Periodic Schrödinger Operators II: The Wave Function , 2016, Communications in Theoretical Physics.
[12] Wei He. A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue , 2014, 1412.6776.
[13] Dae-Yup Song. Localization or tunneling in asymmetric double-well potentials , 2015, 1608.01047.
[14] L. D'alessio,et al. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering , 2014, 1407.4803.
[15] G. Rastelli. Semiclassical formula for quantum tunneling in asymmetric double-well potentials , 2012, 1205.0366.
[16] Wei He. Combinatorial approach to Mathieu and Lam\'e equations , 2011, 1108.0300.
[17] Nate Orlow,et al. Hill ’ s Equation , 2010 .
[18] Dae-Yup Song. Tunneling and energy splitting in an asymmetric double-well potential , 2008, 0803.3113.
[19] H. Müller-kirsten. Introduction to Quantum Mechanics: Schrodinger Equation and Path Integral , 2006 .
[20] Angelique K. Dwyer. Simon , 2019, Archiv für Gynäkologie.
[21] Zhong-Qi Ma,et al. Quantum correction in exact quantization rules , 2005, physics/0502109.
[22] Zhong-Qi Ma,et al. EXACT QUANTIZATION RULES FOR BOUND STATES OF THE SCHRÖDINGER EQUATION , 2004, physics/0406072.
[23] S. Fishman,et al. Effective Hamiltonians for periodically driven systems , 2003, nlin/0301033.
[24] B. Burrows,et al. Localization effects in a double-well model , 1998 .
[25] D. H. Tchrakian,et al. Solitons, bounces and sphalerons on a circle , 1992 .
[26] V. Rubakov,et al. Periodic instantons and scattering amplitudes , 1991 .
[27] N. Manton,et al. Sphalerons on a circle , 1988 .
[28] Grozdanov,et al. Quantum system driven by rapidly varying periodic perturbation. , 1988, Physical review. A, General physics.
[29] H. Dekker. Quantum mechanical barrier problems , 1987 .
[30] C. Bender,et al. RESONANCES IN QUANTUM MECHANICAL TUNNELING , 1985 .
[31] Bhattacharya. Modified semiclassical quantization conditions for double minimum potentials: Applications to anharmonic oscillators. , 1985, Physical review. A, General physics.
[32] J. H. Weiner,et al. Tunneling in asymmetric double‐well potentials , 1981 .
[33] S. Coleman,et al. The Uses of Instantons , 1978 .
[34] Rachel J. Steiner,et al. The spectral theory of periodic differential equations , 1973 .
[35] N. Fröman,et al. On the quantal treatment of the double-well potential problem by means of certain phase-integral approximations , 1972 .
[36] F. Arscott. XXI—The Whittaker-Hill Equation and the Wave Equation in Paraboloidal Co-ordinates , 1967, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.
[37] N. Mclachlan. Theory and Application of Mathieu Functions , 1965 .
[38] R. P. Gillespie,et al. Periodic Differential Equations , 1963 .
[39] R. Dingle,et al. Asymptotic Expansions of Mathieu Functions and their Characteristic Numbers. , 1962 .
[40] J. Meixner,et al. Mathieusche Funktionen und Sphäroidfunktionen , 1954 .
[41] Robert Sips. Représentation asymptotique des fonctions de Mathieu et des fonctions d’onde sphéroidales , 1949 .
[42] J. Meixner. Asymptotische Entwicklung der Eigenwerte und Eigenfunktionen der Differentialgleichungen der Sphäroid-Funktionen und der Mathieuschen Funktionen , 1948 .
[43] W. H. Furry. Two Notes on Phase-Integral Methods , 1947 .
[44] E. Villaseñor. Introduction to Quantum Mechanics , 2008, Nature.