Oscillatory States of Quantum Kapitza Pendulum

[1]  P. Golovinski,et al.  Quantum States of the Kapitza Pendulum , 2021, Russian Physics Journal.

[2]  H. Ott,et al.  A Kapitza Pendulum for Ultracold Atoms , 2021, 2112.10954.

[3]  G. Fiete,et al.  Low-frequency and Moiré–Floquet engineering: A review , 2021 .

[4]  C. Weitenberg,et al.  Tailoring quantum gases by Floquet engineering , 2021, Nature Physics.

[5]  T. Mckeown Mechanics , 1970, The Mathematics of Fluid Flow Through Porous Media.

[6]  Wei He Spectra of elliptic potentials and supersymmetric gauge theories , 2019, Journal of High Energy Physics.

[7]  S. Vongehr,et al.  Solitons , 2020, Encyclopedia of Continuum Mechanics.

[8]  T. Oka,et al.  Floquet Engineering of Quantum Materials , 2018, Annual Review of Condensed Matter Physics.

[9]  A. Gambassi,et al.  Prethermal quantum many-body Kapitza phases of periodically driven spin systems , 2018, Physical Review B.

[10]  Christopher J. Richards,et al.  A microscopic Kapitza pendulum , 2018, Scientific Reports.

[11]  Wei He A New Treatment for Some Periodic Schrödinger Operators II: The Wave Function , 2016, Communications in Theoretical Physics.

[12]  Wei He A New Treatment for Some Periodic Schrodinger Operators I: The Eigenvalue , 2014, 1412.6776.

[13]  Dae-Yup Song Localization or tunneling in asymmetric double-well potentials , 2015, 1608.01047.

[14]  L. D'alessio,et al.  Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering , 2014, 1407.4803.

[15]  G. Rastelli Semiclassical formula for quantum tunneling in asymmetric double-well potentials , 2012, 1205.0366.

[16]  Wei He Combinatorial approach to Mathieu and Lam\'e equations , 2011, 1108.0300.

[17]  Nate Orlow,et al.  Hill ’ s Equation , 2010 .

[18]  Dae-Yup Song Tunneling and energy splitting in an asymmetric double-well potential , 2008, 0803.3113.

[19]  H. Müller-kirsten Introduction to Quantum Mechanics: Schrodinger Equation and Path Integral , 2006 .

[20]  Angelique K. Dwyer Simon , 2019, Archiv für Gynäkologie.

[21]  Zhong-Qi Ma,et al.  Quantum correction in exact quantization rules , 2005, physics/0502109.

[22]  Zhong-Qi Ma,et al.  EXACT QUANTIZATION RULES FOR BOUND STATES OF THE SCHRÖDINGER EQUATION , 2004, physics/0406072.

[23]  S. Fishman,et al.  Effective Hamiltonians for periodically driven systems , 2003, nlin/0301033.

[24]  B. Burrows,et al.  Localization effects in a double-well model , 1998 .

[25]  D. H. Tchrakian,et al.  Solitons, bounces and sphalerons on a circle , 1992 .

[26]  V. Rubakov,et al.  Periodic instantons and scattering amplitudes , 1991 .

[27]  N. Manton,et al.  Sphalerons on a circle , 1988 .

[28]  Grozdanov,et al.  Quantum system driven by rapidly varying periodic perturbation. , 1988, Physical review. A, General physics.

[29]  H. Dekker Quantum mechanical barrier problems , 1987 .

[30]  C. Bender,et al.  RESONANCES IN QUANTUM MECHANICAL TUNNELING , 1985 .

[31]  Bhattacharya Modified semiclassical quantization conditions for double minimum potentials: Applications to anharmonic oscillators. , 1985, Physical review. A, General physics.

[32]  J. H. Weiner,et al.  Tunneling in asymmetric double‐well potentials , 1981 .

[33]  S. Coleman,et al.  The Uses of Instantons , 1978 .

[34]  Rachel J. Steiner,et al.  The spectral theory of periodic differential equations , 1973 .

[35]  N. Fröman,et al.  On the quantal treatment of the double-well potential problem by means of certain phase-integral approximations , 1972 .

[36]  F. Arscott XXI—The Whittaker-Hill Equation and the Wave Equation in Paraboloidal Co-ordinates , 1967, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[37]  N. Mclachlan Theory and Application of Mathieu Functions , 1965 .

[38]  R. P. Gillespie,et al.  Periodic Differential Equations , 1963 .

[39]  R. Dingle,et al.  Asymptotic Expansions of Mathieu Functions and their Characteristic Numbers. , 1962 .

[40]  J. Meixner,et al.  Mathieusche Funktionen und Sphäroidfunktionen , 1954 .

[41]  Robert Sips Représentation asymptotique des fonctions de Mathieu et des fonctions d’onde sphéroidales , 1949 .

[42]  J. Meixner Asymptotische Entwicklung der Eigenwerte und Eigenfunktionen der Differentialgleichungen der Sphäroid-Funktionen und der Mathieuschen Funktionen , 1948 .

[43]  W. H. Furry Two Notes on Phase-Integral Methods , 1947 .

[44]  E. Villaseñor Introduction to Quantum Mechanics , 2008, Nature.