Conformal Bach flow
暂无分享,去创建一个
Peng Lu | Jie Qing | Jiaqi Chen | P. Lu | J. Qing | Jiaqi Chen
[1] Eric Bahuaud,et al. Short-Time Existence for Some Higher-Order Geometric Flows , 2010, 1010.4287.
[2] Calabi flow in Riemann surfaces revisited: a new point of view , 2000, math/0009246.
[3] Eugenio Calabi,et al. Extremal Kähler Metrics II , 1985 .
[4] Conformal Ricci flow on asymptotically hyperbolic manifolds , 2018, Science China Mathematics.
[5] An introduction to conformal Ricci flow , 2003, math/0312519.
[6] R. Hamilton. Three-manifolds with positive Ricci curvature , 1982 .
[7] P. Lu,et al. A note on conformal Ricci flow , 2011, 1109.5377.
[8] G. Tian,et al. Global Existence of the m -equivariant Yang-Mills Flow in Four Dimensional Spaces , 2004 .
[9] E. Kuwert,et al. Gradient flow for the Willmore functional , 2002 .
[10] Brett L. Kotschwar. A short proof of backward uniqueness for some geometric evolution equations , 2015, 1501.00946.
[11] J. Streets. The gradient flow of the $L^2$ curvature energy near the round sphere , 2010, 1003.1707.
[12] E. Kuwert,et al. The Willmore Flow with Small Initial Energy , 2001 .
[13] A. Schlatter,et al. Global existence of the equivariant Yang-Mills heat flow in four space dimensions , 1998 .
[14] B. Chow,et al. Hamilton's Ricci Flow , 2018 .
[15] Brett L. Kotschwar. Backwards uniqueness of the Ricci flow , 2009, 0906.4920.
[16] Long-time existence for Yang–Mills flow , 2016, Inventiones mathematicae.
[17] H. Cao,et al. On Bach-flat gradient shrinking Ricci solitons , 2011, 1105.3163.
[18] D. Lüst,et al. Geometric flows in Hořava-Lifshitz gravity , 2010, 1002.0062.
[19] J. Streets. The Gradient Flow of the L2 Curvature Functional with Small Initial Energy , 2012 .
[20] Brett L. Kotschwar. An energy approach to the problem of uniqueness for the Ricci flow , 2012, 1206.3225.
[21] C. Lopez. Ambient Obstruction Flow , 2015, 1506.01979.
[22] M. Struwe. The Yang-Mills flow in four dimensions , 1994 .
[23] J. Streets. The gradient flow of the $L^2$ curvature energy on surfaces , 2010, 1008.4311.
[24] Richard S. Hamilton,et al. Harmonic Maps of Manifolds with Boundary , 1975 .