Conformal Bach flow

Abstract. In this article we introduce conformal Bach flow and establish its wellposedness on closed manifolds. We also obtain its backward uniqueness. To give an attempt to study the long-time behavior of conformal Bach flow, assuming that the curvature and the pressure function are bounded, global and local Shi’s type L-estimate of derivatives of curvatures are derived. Furthermore using the L-estimate and based on an idea from [St13] we show Shi’s pointwise-estimate of derivatives of curvatures without assuming Sobolev constant bound.

[1]  Eric Bahuaud,et al.  Short-Time Existence for Some Higher-Order Geometric Flows , 2010, 1010.4287.

[2]  Calabi flow in Riemann surfaces revisited: a new point of view , 2000, math/0009246.

[3]  Eugenio Calabi,et al.  Extremal Kähler Metrics II , 1985 .

[4]  Conformal Ricci flow on asymptotically hyperbolic manifolds , 2018, Science China Mathematics.

[5]  An introduction to conformal Ricci flow , 2003, math/0312519.

[6]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .

[7]  P. Lu,et al.  A note on conformal Ricci flow , 2011, 1109.5377.

[8]  G. Tian,et al.  Global Existence of the m -equivariant Yang-Mills Flow in Four Dimensional Spaces , 2004 .

[9]  E. Kuwert,et al.  Gradient flow for the Willmore functional , 2002 .

[10]  Brett L. Kotschwar A short proof of backward uniqueness for some geometric evolution equations , 2015, 1501.00946.

[11]  J. Streets The gradient flow of the $L^2$ curvature energy near the round sphere , 2010, 1003.1707.

[12]  E. Kuwert,et al.  The Willmore Flow with Small Initial Energy , 2001 .

[13]  A. Schlatter,et al.  Global existence of the equivariant Yang-Mills heat flow in four space dimensions , 1998 .

[14]  B. Chow,et al.  Hamilton's Ricci Flow , 2018 .

[15]  Brett L. Kotschwar Backwards uniqueness of the Ricci flow , 2009, 0906.4920.

[16]  Long-time existence for Yang–Mills flow , 2016, Inventiones mathematicae.

[17]  H. Cao,et al.  On Bach-flat gradient shrinking Ricci solitons , 2011, 1105.3163.

[18]  D. Lüst,et al.  Geometric flows in Hořava-Lifshitz gravity , 2010, 1002.0062.

[19]  J. Streets The Gradient Flow of the L2 Curvature Functional with Small Initial Energy , 2012 .

[20]  Brett L. Kotschwar An energy approach to the problem of uniqueness for the Ricci flow , 2012, 1206.3225.

[21]  C. Lopez Ambient Obstruction Flow , 2015, 1506.01979.

[22]  M. Struwe The Yang-Mills flow in four dimensions , 1994 .

[23]  J. Streets The gradient flow of the $L^2$ curvature energy on surfaces , 2010, 1008.4311.

[24]  Richard S. Hamilton,et al.  Harmonic Maps of Manifolds with Boundary , 1975 .