Dephasing Process of a Single Atom Interacting with a Two-Mode Field

We consider the interaction of a qubit system with a two-mode field in the presence of multi-photon transition and phase damping effect. We use the master equation to obtain the density operator when the qubit is initially prepared in its excited state and the field is in a finite-dimensional pair coherent state. The properties of the considered system, such as the population inversion, amount of the mixedness, parameter estimation, and squeezing, are explored for one- and two-photon transitions. The effects of photon addition to the field and phase damping on the evaluation of these quantumness measures are also investigated.

[1]  Mediated entanglement and correlations in a star network of interacting spins , 2002, quant-ph/0208114.

[2]  Wódkiewicz Reduced quantum fluctuations in the Josephson junction. , 1985, Physical review. B, Condensed matter.

[3]  Single-atom entropy squeezing for two two-level atoms interacting with a single-mode radiation field , 2007, quant-ph/0703075.

[4]  S. Clark,et al.  Entanglement and entropy engineering of atomic two-qubit States. , 2002, Physical review letters.

[5]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[6]  G. Milburn,et al.  Universal state inversion and concurrence in arbitrary dimensions , 2001, quant-ph/0102040.

[7]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[8]  A. Obada,et al.  Generation and some non-classical properties of a finite dimensional pair coherent state , 2006 .

[9]  Jian-Wei Pan,et al.  Experimental demonstration of a BDCZ quantum repeater node , 2008, Nature.

[10]  A. Shumovsky,et al.  Collective spontaneous radiation of two atoms in the finite-Q cavity , 1990 .

[11]  Klein,et al.  Observation of quantum collapse and revival in a one-atom maser. , 1987, Physical review letters.

[12]  K. Berrada,et al.  Protecting the precision of estimation in a photonic crystal , 2015 .

[13]  Peter L. Knight,et al.  Fluctuations and entropy in models of quantum optical resonance , 1988 .

[14]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[15]  Masahito Ueda,et al.  Quantum-Controlled Few-Photon State Generated by Squeezed Atoms , 1997, quant-ph/9708023.

[16]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[17]  S. Braunstein,et al.  Harmonic oscillator driven by a quantum current. , 1989, Physical review letters.

[18]  A. Zúñiga-Segundo,et al.  Entropy fluctuations to quantify mixedness , 2019 .

[19]  Phoenix,et al.  Wave-packet evolution in the damped oscillator. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[20]  M. Mahmoudi,et al.  The effect of a coupling field on the entanglement dynamics of a three-level atom , 2011, 1210.3179.

[21]  Non-Markovian dynamics in a spin star system: Exact solution and approximation techniques , 2004, quant-ph/0401051.

[22]  Seth Lloyd,et al.  Advances in photonic quantum sensing , 2018, Nature Photonics.

[23]  Walther,et al.  Nonclassical radiation of a single stored ion. , 1987, Physical review letters.

[24]  H. Weinfurter,et al.  Remote preparation of an atomic quantum memory , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[25]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[26]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[27]  Ueda,et al.  Squeezed spin states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[28]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[29]  Ashraf,et al.  Atomic-dipole squeezing and emission spectra of the nondegenerate two-photon Jaynes-Cummings model. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[30]  Haidong Yuan,et al.  Quantum parameter estimation with optimal control , 2016, 1604.04856.

[31]  M. Mahmoudi,et al.  Phase-controlled atom—photon entanglement in a three-level Λ—type closed-loop atomic system , 2013 .

[32]  Barry C. Sanders,et al.  Journeys from quantum optics to quantum technology , 2017, 1707.03286.

[33]  S. Swain,et al.  Entropy squeezing for a two-level atom , 2000 .

[34]  Entanglement induced by a single-mode heat environment , 2001, quant-ph/0109052.

[35]  Mohammad Mahmoudi,et al.  Phase-Controlled Atom-Photon Entanglement in a Three-Level V-Type Atomic System via Spontaneously Generated Coherence , 2011, Entropy.

[36]  M. S. Abdalla,et al.  Variance squeezing and entanglement of the XX central spin model , 2011, 1106.3394.

[37]  Xing Xiao,et al.  Classical-driving-enhanced parameter-estimation precision of a non-Markovian dissipative two-state system , 2015, 1503.02260.

[38]  R. L. Franco,et al.  Quantumness and memory of one qubit in a dissipative cavity under classical control , 2019, Annals of Physics.

[39]  Qian-qian Bao,et al.  The influence of spontaneously generated coherence on atom-photon entanglement in a Λ-type system with an incoherent pump , 2014 .

[40]  Jose Javier Sanchez-Mondragon,et al.  Periodic spontaneous collapse and revival in a simple quantum model , 1980 .

[41]  K. Mølmer,et al.  SPIN SQUEEZING IN AN ENSEMBLE OF ATOMS ILLUMINATED WITH SQUEEZED LIGHT , 1997 .

[42]  Wineland,et al.  Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[43]  K. Berrada,et al.  Non-Markovian effect on the precision of parameter estimation , 2013 .

[45]  A. Aktağ,et al.  Stationary State Entanglement of Two Atoms Inside an Optical Cavity under Noise , 2008 .

[46]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[47]  A. Messina,et al.  Entanglement sudden death and sudden birth in two uncoupled spins , 2009, 0910.5592.

[48]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[49]  Sixia Yu,et al.  Robust quantum metrological schemes based on protection of quantum Fisher information , 2014, Nature Communications.

[50]  G. Agarwal,et al.  Cavity-induced two-photon absorption in unidentical atoms , 1998 .

[51]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[52]  S. Abdel-Khalek,et al.  Entropy squeezing of time dependent single-mode Jaynes–Cummings model in presence of non-linear effect , 2008 .

[53]  D. Walls,et al.  Reduced Quantum Fluctuations in Resonance Fluorescence , 1981 .

[54]  A Acín,et al.  Noisy metrology beyond the standard quantum limit. , 2012, Physical review letters.

[55]  Karolin Papst Principles Of Quantum Computation And Information , 2016 .

[56]  S. R. Entezar Controllable atom–photon entanglement near a 3D anisotropic photonic band edge , 2010 .

[57]  E. Polzik,et al.  Quantum Noise of an Atomic Spin Polarization Measurement , 1998 .

[58]  S. Abdel-Khalek Quantum Fisher information flow and entanglement in pair coherent states , 2014 .

[59]  P. Knight,et al.  Simultaneous jumps in two two-level atoms , 1989 .

[60]  Kuklinski,et al.  Strong squeezing in the Jaynes-Cummings model. , 1988, Physical review. A, General physics.

[61]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[62]  P. Milonni,et al.  Chaos in the Semiclassical N-Atom Jaynes-Cummings Model: Failure of the Rotating-Wave Approximation , 1983 .

[63]  Anirban Pathak,et al.  Elements of Quantum Computation and Quantum Communication , 2013 .

[64]  D. Mattis Quantum Theory of Angular Momentum , 1981 .