Graphical Methods in Device-Independent Quantum Cryptography

We introduce a framework for graphical security proofs in device-independent quantum cryptography using the methods of categorical quantum mechanics. We are optimistic that this approach will make some of the highly complex proofs in quantum cryptography more accessible, facilitate the discovery of new proofs, and enable automated proof verification. As an example of our framework, we reprove a previous result from device-independent quantum cryptography: any linear randomness expansion protocol can be converted into an unbounded randomness expansion protocol. We give a graphical proof of this result, and implement part of it in the Globular proof assistant.

[1]  Bob Coecke,et al.  From Quantum Foundations via Natural Language Meaning to a Theory of Everything , 2016, The Incomputable.

[2]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[3]  Yaoyun Shi,et al.  Robust protocols for securely expanding randomness and distributing keys using untrusted quantum devices , 2014, STOC.

[4]  Aleks Kissinger,et al.  Globular: an online proof assistant for higher-dimensional rewriting , 2016 .

[5]  A. Silva,et al.  Proceedings of the 30th conference on Mathematical Foundations of Programming Semantics ( MFPS XXX) : Preface , 2014 .

[6]  Jamie Vicary,et al.  Bicategorical Semantics for Nondeterministic Computation , 2013, MFPS.

[7]  Omar Fawzi,et al.  Entropy Accumulation , 2016, Communications in Mathematical Physics.

[8]  Aleks Kissinger,et al.  Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning , 2017 .

[9]  Serge Fehr,et al.  Security and Composability of Randomness Expansion from Bell Inequalities , 2011, ArXiv.

[10]  Aleks Kissinger,et al.  Categorical Quantum Mechanics II: Classical-Quantum Interaction , 2016, 1605.08617.

[11]  U. Vazirani,et al.  Certifiable quantum dice , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Anne Hillebrand,et al.  Superdense Coding with GHZ and Quantum Key Distribution with W in the ZX-calculus , 2012, QPL.

[13]  Thomas Vidick,et al.  Practical device-independent quantum cryptography via entropy accumulation , 2018, Nature Communications.

[14]  Matthew Coudron,et al.  Infinite randomness expansion with a constant number of devices , 2014, STOC.

[15]  Simon Perdrix,et al.  Environment and Classical Channels in Categorical Quantum Mechanics , 2010, CSL.

[16]  Matthew Coudron,et al.  Infinite Randomness Expansion and Amplification with a Constant Number of Devices , 2013, 1310.6755.

[17]  Thomas Vidick,et al.  Simple and tight device-independent security proofs , 2016, SIAM J. Comput..

[18]  Andrew Chi-Chih Yao,et al.  Quantum cryptography with imperfect apparatus , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[19]  David Shmoys Proceedings of the forty-sixth annual ACM symposium on Theory of computing , 2014, STOC 2014.

[20]  Emanuel Knill,et al.  Quantum Probability Estimation for Randomness with Quantum Side Information , 2018, 1806.04553.

[21]  Mendel Sachs,et al.  ON QUANTUM RANDOMNESS , 1998 .

[22]  W. Marsden I and J , 2012 .

[23]  Aleks Kissinger,et al.  Globular: an online proof assistant for higher-dimensional rewriting , 2016, Log. Methods Comput. Sci..

[24]  Jamie Vicary The Topology of Quantum Algorithms , 2012, 1209.3917.

[25]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[26]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[27]  Umesh V. Vazirani,et al.  Certifiable Quantum Dice - Or, testable exponential randomness expansion , 2011, 1111.6054.

[28]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[29]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[30]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[31]  Aleks Kissinger,et al.  Categorical Quantum Mechanics I: Causal Quantum Processes , 2015, 1510.05468.

[32]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[33]  Simon Perdrix,et al.  Environment and Classical Channels in Categorical Quantum Mechanics , 2010, CSL.

[34]  Filippo Bonchi,et al.  A Categorical Semantics of Signal Flow Graphs , 2014, CONCUR.

[35]  Neil Genzlinger A. and Q , 2006 .

[36]  Aleks Kissinger,et al.  Picture-perfect Quantum Key Distribution , 2017, 1704.08668.

[37]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[38]  Ueli Maurer,et al.  Abstract Cryptography , 2011, ICS.

[39]  Yaoyun Shi,et al.  Physical Randomness Extractors: Generating Random Numbers with Minimal Assumptions , 2014, 1402.4797.

[40]  Yaoyun Shi,et al.  N ov 2 01 4 Universal security for randomness expansion , 2014 .

[41]  Aleks Kissinger,et al.  A categorical semantics for causal structure , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[42]  Toniann Pitassi,et al.  Proceedings of the forty-fourth annual ACM symposium on Theory of computing , 2012, STOC 2012.

[43]  Dusko Pavlovic,et al.  Chasing Diagrams in Cryptography , 2014, Categories and Types in Logic, Language, and Physics.

[44]  Alan Mink,et al.  Experimentally generated randomness certified by the impossibility of superluminal signals , 2018, Nature.

[45]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[46]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[47]  Roger Colbeck,et al.  Quantum And Relativistic Protocols For Secure Multi-Party Computation , 2009, 0911.3814.

[48]  Alan Mink,et al.  Experimentally Generated Random Numbers Certified by the Impossibility of Superluminal Signaling , 2017, 1702.05178.

[49]  Ueli Maurer,et al.  Causal Boxes: Quantum Information-Processing Systems Closed Under Composition , 2015, IEEE Transactions on Information Theory.

[50]  Jamie Vicary Topological Structure of Quantum Algorithms , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[51]  Umesh V. Vazirani,et al.  Certifiable quantum dice: or, true random number generation secure against quantum adversaries , 2012, STOC '12.

[52]  Yongjun Wang,et al.  Graphical Calculus for Quantum Key Distribution (Extended Abstract) , 2011, Electron. Notes Theor. Comput. Sci..

[53]  Chris Heunen,et al.  Compactly Accessible Categories and Quantum Key Distribution , 2008, Log. Methods Comput. Sci..

[54]  Stefano Pironio,et al.  Security of practical private randomness generation , 2011, 1111.6056.

[55]  Anindya De,et al.  Trevisan's Extractor in the Presence of Quantum Side Information , 2009, SIAM J. Comput..