Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases

A semiempirical addition of dispersive forces to conventional density functionals (DFT‐D) has been implemented into a pseudopotential plane‐wave code. Test calculations on the benzene dimer reproduced the results obtained by using localized basis set, provided that the latter are corrected for the basis set superposition error. By applying the DFT‐D/plane‐wave approach a substantial agreement with experiments is found for the structure and energetics of polyethylene and graphite, two typical solids that are badly described by standard local and semilocal density functionals. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009

[1]  University of Cambridge,et al.  THERMAL CONTRACTION AND DISORDERING OF THE AL(110) SURFACE , 1999 .

[2]  P. Ugliengo,et al.  B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals , 2008 .

[3]  A. Ludsteck Bestimmung der Ånderung der Gitterkonstanten und des anisotropen Debye–Waller‐Faktors von Graphit mittels Neutronenbeugung im Temperaturbereich von 25 bis 1850°C , 1972 .

[4]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[5]  Towards a working density-functional theory for polymers: First-principles determination of the polyethylene crystal structure , 2006, cond-mat/0611498.

[6]  Kevin E. Riley,et al.  A DFT-D investigation of the mechanisms for activation of the wild-type and S810L mutated mineralocorticoid receptor by steroid hormones. , 2008, Journal of Physical Chemistry B.

[7]  S. Grimme,et al.  Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost. , 2008, Accounts of chemical research.

[8]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[9]  M. W. Thomas,et al.  Low temperature crystal structure of polyethylene: Results from a neutron diffraction study and from potential energy calculations , 1975 .

[10]  O. A. V. Lilienfeld,et al.  Predicting noncovalent interactions between aromatic biomolecules with London-dispersion-corrected DFT. , 2007, The journal of physical chemistry. B.

[11]  L. Cavallo,et al.  Parametrization of an empirical correction term to density functional theory for an accurate description of pi-stacking interactions in nucleic acids. , 2007, The journal of physical chemistry. B.

[12]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[13]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[14]  Steven G. Louie,et al.  MICROSCOPIC DETERMINATION OF THE INTERLAYER BINDING ENERGY IN GRAPHITE , 1998 .

[15]  V. Barone,et al.  Implementation and validation of DFT-D for molecular vibrations and dynamics: The benzene dimer as a case study , 2008 .

[16]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[17]  Sandro Scandolo,et al.  Dynamical and thermal properties of polyethylene by ab initio simulation , 2000 .

[18]  F. London,et al.  Zur Theorie und Systematik der Molekularkräfte , 1930 .

[19]  Friedhelm Bechstedt,et al.  Semiempirical van der Waals correction to the density functional description of solids and molecular structures , 2006 .

[20]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[21]  Jirí Cerný,et al.  Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations , 2007, J. Comput. Chem..

[22]  I. Zilberberg,et al.  Paired Orbitals for Different Spins equations , 2008 .

[23]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[24]  Stefan Grimme,et al.  Noncovalent Interactions between Graphene Sheets and in Multishell (Hyper)Fullerenes , 2007 .

[25]  Dongwook Kim,et al.  Understanding of assembly phenomena by aromatic-aromatic interactions: benzene dimer and the substituted systems. , 2007, The journal of physical chemistry. A.

[26]  Zhao,et al.  X-ray diffraction data for graphite to 20 GPa. , 1989, Physical review. B, Condensed matter.

[27]  P. Mitchell A chemist's guide to density functional theory. Wolfram Koch and Max C. Holthausen. Wiley–VCH, Weinheim, 2000. x + 294 pages. £70 ISBN 3‐527‐29918‐1 , 2000 .

[28]  Syassen,et al.  Graphite under pressure: Equation of state and first-order Raman modes. , 1989, Physical review. B, Condensed matter.

[29]  P. Hyldgaard,et al.  Van der Waals density functional for layered structures. , 2003, Physical review letters.

[30]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[31]  Hendrik Ulbricht,et al.  Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons , 2004 .

[32]  Bradley P. Dinte,et al.  Soft cohesive forces , 2005 .

[33]  Qin Wu,et al.  Empirical correction to density functional theory for van der Waals interactions , 2002 .

[34]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[35]  Peter Pulay,et al.  High accuracy benchmark calculations on the benzene dimer potential energy surface , 2007 .

[36]  Jansen,et al.  Structural and electronic properties of graphite via an all-electron total-energy local-density approach. , 1987, Physical review. B, Condensed matter.

[37]  Ivano Tavernelli,et al.  Optimization of effective atom centered potentials for london dispersion forces in density functional theory. , 2004, Physical review letters.

[38]  L. Girifalco,et al.  Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System , 1956 .

[39]  M. Head‐Gordon,et al.  On the T-shaped structures of the benzene dimer , 2007 .

[40]  O. A. von Lilienfeld,et al.  Library of dispersion-corrected atom-centered potentials for generalized gradient approximation functionals: Elements H, C, N, O, He, Ne, Ar, and Kr , 2007 .

[41]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[42]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .