Semi-algebraic colorings of complete graphs

We consider $m$-colorings of the edges of a complete graph, where each color class is defined semi-algebraically with bounded complexity. The case $m = 2$ was first studied by Alon et al., who applied this framework to obtain surprisingly strong Ramsey-type results for intersection graphs of geometric objects and for other graphs arising in computational geometry. Considering larger values of $m$ is relevant, e.g., to problems concerning the number of distinct distances determined by a point set. For $p\ge 3$ and $m\ge 2$, the classical Ramsey number $R(p;m)$ is the smallest positive integer $n$ such that any $m$-coloring of the edges of $K_n$, the complete graph on $n$ vertices, contains a monochromatic $K_p$. It is a longstanding open problem that goes back to Schur (1916) to decide whether $R(p;m)=2^{O(m)}$, for a fixed $p$. We prove that this is true if each color class is defined semi-algebraically with bounded complexity. The order of magnitude of this bound is tight. Our proof is based on the Cutting Lemma of Chazelle {\em et al.}, and on a Szemeredi-type regularity lemma for multicolored semi-algebraic graphs, which is of independent interest. The same technique is used to address the semi-algebraic variant of a more general Ramsey-type problem of Erdős and Shelah.

[1]  J. Pach,et al.  A semi-algebraic version of Zarankiewicz's problem , 2014, 1407.5705.

[2]  Asaf Shapira,et al.  A short proof of Gowers’ lower bound for the regularity lemma , 2016, Comb..

[3]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[4]  János Pach,et al.  Overlap properties of geometric expanders , 2011, SODA '11.

[5]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[6]  Noga Alon,et al.  Crossing patterns of semi-algebraic sets , 2005, J. Comb. Theory, Ser. A.

[7]  JANOS BOLYAI,et al.  Some remarks on Ramsey ’ s and TurWs theorem , 2002 .

[8]  Vladlen Koltun,et al.  Almost tight upper bounds for vertical decompositions in four dimensions , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[9]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[10]  D. Mubayi,et al.  When is an Almost Monochromatic K4 Guaranteed? , 2008, Combinatorics, Probability and Computing.

[11]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[12]  L. Guth,et al.  On the Erdős distinct distances problem in the plane , 2015 .

[13]  Leonidas J. Guibas,et al.  A Singly Exponential Stratification Scheme for Real Semi-Algebraic Varieties and its Applications , 1991, Theor. Comput. Sci..

[14]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[15]  P. Erdos,et al.  Solved and Unsolved Problems in Combinatorics and Combinatorial Number Theory , 2022 .

[16]  David Conlon,et al.  The Erdős–Gyárfás problem on generalized Ramsey numbers , 2014, 1403.0250.

[17]  Jacob Fox,et al.  A tight lower bound for Szemerédi’s regularity lemma , 2017, Comb..

[18]  Alexandr V. Kostochka,et al.  When is an Almost Monochromatic K4 Guaranteed? , 2008, Comb. Probab. Comput..

[19]  Benny Sudakov,et al.  Ramsey-Type Problem for an Almost Monochromatic K4 , 2008, SIAM J. Discret. Math..

[20]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[21]  Peter Keevash Surveys in Combinatorics 2011: Hypergraph Turán problems , 2011 .

[22]  János Pach,et al.  Density and regularity theorems for semi-algebraic hypergraphs , 2015, SODA.

[23]  L. Moser,et al.  AN EXTREMAL PROBLEM IN GRAPH THEORY , 2001 .

[24]  J JacobFox,et al.  A semi-algebraic version of Zarankiewicz's problem , 2014 .

[25]  P. Erdös On an extremal problem in graph theory , 1970 .

[26]  Steven Roman,et al.  A Problem of Zarankiewicz , 1975, J. Comb. Theory, Ser. A.

[27]  Xiaodong Xu,et al.  Constructive Lower Bounds on Classical Multicolor Ramsey Numbers , 2004, Electron. J. Comb..

[28]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[29]  András Gyárfás,et al.  A variant of the classical Ramsey problem , 1997, Comb..

[30]  P. Varnavides,et al.  On Certain Sets of Positive Density , 1959 .

[31]  Bartosz Walczak Triangle-Free Geometric Intersection Graphs with No Large Independent Sets , 2015, Discret. Comput. Geom..

[32]  David Conlon,et al.  Bounds for graph regularity and removal lemmas , 2011, ArXiv.

[33]  Gábor N. Sárközy,et al.  On Edge Colorings with at Least q Colors in Every Subset of p Vertices , 2000, Electron. J. Comb..

[34]  Miklós Simonovits,et al.  Ramsey-Turán theory , 2001, Discret. Math..

[35]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[36]  Dhruv Mubayi,et al.  Note – Edge-Coloring Cliques with Three Colors on All 4-Cliques , 1998, Comb..

[37]  Endre Szemerédi,et al.  More results on Ramsey—Turán type problems , 1983, Comb..

[38]  P. Erdös On Sets of Distances of n Points , 1946 .

[39]  Andrew Suk,et al.  Semi-algebraic Ramsey numbers , 2014, J. Comb. Theory, Ser. B.