A review of electrical impedance tomography in lung applications: Theory and algorithms for absolute images

Electrical Impedance Tomography (EIT) is under fast development, the present paper is a review of some procedures that are contributing to improve spatial resolution and material properties accuracy, admitivitty or impeditivity accuracy. A review of EIT medical applications is presented and they were classified into three broad categories: ARDS patients, obstructive lung diseases and perioperative patients. The use of absolute EIT image may enable the assessment of absolute lung volume, which may significantly improve the clinical acceptance of EIT. The Control Theory, the State Observers more specifically, have a developed theory that can be used for the design and operation of EIT devices. Electrode placement, current injection strategy and electrode electric potential measurements strategy should maximize the number of observable and controllable directions of the state vector space. A non-linear stochastic state observer, the Unscented Kalman Filter, is used directly for the reconstruction of absolute EIT images. Historically, difference images were explored first since they are more stable in the presence of modelling errors. Absolute images require more detailed models of contact impedance, stray capacitance and properly refined finite element mesh where the electric potential gradient is high. Parallelization of the forward program computation is necessary since the solution of the inverse problem often requires frequent solutions of the forward problem. Several reconstruction algorithms benefit by the Bayesian inverse problem approach and the concept of prior information. Anatomic and physiologic information are used to form the prior information. An already tested methodology is presented to build the prior probability density function using an ensemble of CT scans and in vivo impedance measurements. Eight absolute EIT image algorithms are presented.

[1]  S. Hamilton EIT Imaging of admittivities with a D-bar method and spatial prior: experimental results for absolute and difference imaging , 2017, Physiological measurement.

[2]  K Möller,et al.  Spontaneous breathing trials after prolonged mechanical ventilation monitored by electrical impedance tomography: an observational study , 2017, Acta anaesthesiologica Scandinavica.

[3]  J Kaipio,et al.  Generalized optimal current patterns and electrical safety in EIT. , 2001, Physiological measurement.

[4]  A. Goetz,et al.  Intraoperative Ventilation of Morbidly Obese Patients Guided by Transpulmonary Pressure , 2017, Obesity Surgery.

[5]  Giovanni Gandini,et al.  Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. , 2007, American journal of respiratory and critical care medicine.

[6]  Pascal Leprince,et al.  Bedside Contribution of Electrical Impedance Tomography to Setting Positive End‐Expiratory Pressure for Extracorporeal Membrane Oxygenation‐treated Patients with Severe Acute Respiratory Distress Syndrome , 2017, American journal of respiratory and critical care medicine.

[7]  Min Chan Kim,et al.  Nonstationary electrical impedance tomography with the interacting multiple model scheme , 2004 .

[8]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[9]  Martin Hanke,et al.  Recent progress in electrical impedance tomography , 2003 .

[10]  Gerhard Wellein,et al.  Sparse Matrix-vector Multiplication on GPGPU Clusters: A New Storage Format and a Scalable Implementation , 2011, 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum.

[11]  Michael Capps,et al.  Estimating regions of air trapping from electrical impedance tomography data , 2018, Physiological measurement.

[12]  W J Tompkins,et al.  A regularised electrical impedance tomography reconstruction algorithm. , 1988, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[13]  Arto Voutilainen,et al.  Estimation of non-stationary region boundaries in EIT—state estimation approach , 2001 .

[14]  K. Lowhagen,et al.  Regional intratidal gas distribution in acute lung injury and acute respiratory distress syndrome assessed by electric impedance tomography. , 2010, Minerva anestesiologica.

[15]  D. Bergmans,et al.  Clinical implementation of electric impedance tomography in the treatment of ARDS: a single centre experience , 2018, Journal of Clinical Monitoring and Computing.

[16]  Kevin Paulson,et al.  Electrode modelling in electrical impedance tomography , 1992 .

[17]  Jason H T Bates,et al.  Oscillation mechanics of the human lung periphery in asthma. , 2004, Journal of applied physiology.

[18]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[19]  Tzu-Jen Kao,et al.  A 3D reconstruction algorithm for EIT using a handheld probe for breast cancer detection , 2006, Physiological measurement.

[20]  Pierre Alquier,et al.  Noisy Monte Carlo: convergence of Markov chains with approximate transition kernels , 2014, Statistics and Computing.

[21]  Peter Herrmann,et al.  Regional Lung Perfusion as Determined by Electrical Impedance Tomography in Comparison With Electron Beam CT Imaging , 2002, IEEE Transactions on Medical Imaging.

[22]  Knut Möller,et al.  Regional ventilation redistribution measured by electrical impedance tomography during spontaneous breathing trial with automatic tube compensation , 2017, Physiological measurement.

[23]  Zhanqi Zhao,et al.  Electrical impedance tomography: functional lung imaging on its way to clinical practice? , 2015, Expert review of respiratory medicine.

[24]  Zhanqi Zhao,et al.  Patient-ventilator asynchrony identified with electrical impedance tomography , 2018 .

[25]  E. Somersalo,et al.  Statistical inverse problems: discretization, model reduction and inverse crimes , 2007 .

[26]  Bastian Harrach,et al.  JUSTIFICATION OF POINT ELECTRODE MODELS IN ELECTRICAL IMPEDANCE TOMOGRAPHY , 2011 .

[27]  David Isaacson,et al.  Layer stripping: a direct numerical method for impedance imaging , 1991 .

[28]  Andy Adler,et al.  Electrical impedance tomography: regularized imaging and contrast detection , 1996, IEEE Trans. Medical Imaging.

[29]  Steffen Leonhardt,et al.  Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group , 2016, Thorax.

[30]  Jutta Bikowski,et al.  2D EIT reconstructions using Calderon's method , 2008 .

[31]  Cícero R. de Lima,et al.  Electrical impedance tomography through constrained sequential linear programming: a topology optimization approach , 2007 .

[32]  Arthur S Slutsky,et al.  Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. , 2008, JAMA.

[33]  Zhanqi Zhao,et al.  Assessment of Lung Recruitment by Electrical Impedance Tomography and Oxygenation in ARDS Patients , 2016, Medicine.

[34]  George Panoutsos,et al.  Absolute Electrical Impedance Tomography (aEIT) Guided Ventilation Therapy in Critical Care Patients: Simulations and Future Trends , 2009, IEEE Transactions on Information Technology in Biomedicine.

[35]  Chunming Li,et al.  Level set evolution without re-initialization: a new variational formulation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[36]  Thiago de Castro Martins,et al.  Markov Chain Monte Carlo Electrical Impedance Tomography Reconstruction through Intervalar Evaluation , 2018 .

[37]  Melody Dodd,et al.  A Real-time D-bar Algorithm for 2-D Electrical Impedance Tomography Data. , 2014, Inverse problems and imaging.

[38]  Jennifer L. Mueller,et al.  Real-Time Implementation of Calderón’s Method on Subject-Specific Domains , 2017, IEEE Transactions on Medical Imaging.

[39]  Michael Capps,et al.  Evaluation of surrogate measures of pulmonary function derived from electrical impedance tomography data in children with cystic fibrosis , 2018, Physiological measurement.

[40]  Zhanqi Zhao,et al.  Influence of tidal volume on ventilation distribution and oxygenation during one‐lung ventilation , 2018, The Kaohsiung journal of medical sciences.

[41]  Richard Beale,et al.  The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material , 2012, Intensive Care Medicine.

[42]  P J Vauhkonen,et al.  Errors due to the truncation of the computational domain in static three-dimensional electrical impedance tomography. , 2000, Physiological measurement.

[43]  Inéz Frerichs,et al.  High-frequency oscillatory ventilation in patients with acute exacerbation of chronic obstructive pulmonary disease. , 2012, Journal of critical care.

[44]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[45]  N. Weiler,et al.  Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease. , 2016, American journal of physiology. Lung cellular and molecular physiology.

[46]  Renato Seiji Tavares,et al.  Electrical Impedance Tomography Reconstruction Through Simulated Annealing using a New Outside-in Heuristic and GPU Parallelization , 2012 .

[47]  S. Staboulis,et al.  Electrode modelling: The effect of contact impedance , 2013, 1312.4202.

[48]  C. Yang,et al.  Identification, reduction, and refinement of model parameters by theeigensystem realization algorithm , 1990 .

[49]  Ethan Y. Brovman,et al.  Intraoperative Ventilation Patterns in Morbidly Obese Patients Undergoing Laparoscopic Bariatric Surgery. , 2018, Journal of laparoendoscopic & advanced surgical techniques. Part A.

[50]  B. Eyüboğlu,et al.  Application of electrical impedance tomography in diagnosis of emphysema--a clinical study. , 1995, Physiological measurement.

[51]  Weida Zhang,et al.  An instrumental electrode model for solving EIT forward problems , 2014, Physiological measurement.

[52]  J C Newell,et al.  Imaging cardiac activity by the D-bar method for electrical impedance tomography , 2006, Physiological measurement.

[53]  Thiago de C. Martins,et al.  Image reconstruction by electrical impedance tomography using multi-objective simulated annealing , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[54]  M. Amato,et al.  Monitoring of Pneumothorax Appearance with Electrical Impedance Tomography during Recruitment Maneuvers. , 2017, American journal of respiratory and critical care medicine.

[55]  K. Lowhagen,et al.  A new non‐radiological method to assess potential lung recruitability: a pilot study in ALI patients , 2011, Acta anaesthesiologica Scandinavica.

[56]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[57]  Savino Spadaro,et al.  Variation of poorly ventilated lung units (silent spaces) measured by electrical impedance tomography to dynamically assess recruitment , 2018, Critical Care.

[58]  Andreas Hauptmann,et al.  A Direct D-Bar Method for Partial Boundary Data Electrical Impedance Tomography With a Priori Information , 2017 .

[59]  William R B Lionheart,et al.  The Reconstruction Problem , 2017 .

[60]  Jennifer L. Mueller,et al.  Incorporating a Spatial Prior into Nonlinear D-Bar EIT Imaging for Complex Admittivities , 2016, IEEE Transactions on Medical Imaging.

[61]  Thiago de Castro Martins,et al.  Investigating Anisotropic EIT with Simulated Annealing , 2017 .

[62]  Numerical Convergence of 3D Electrode Models used in Electrical Impedance Tomography , 2018 .

[63]  Matti Lassas,et al.  REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM , 2009 .

[64]  Raul Gonzalez Lima,et al.  Electrical impedance tomography using the extended Kalman filter , 2004, IEEE Transactions on Biomedical Engineering.

[65]  M.A. El-Sharkawi,et al.  Pareto Multi Objective Optimization , 2005, Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems.

[66]  H. Wrigge,et al.  Detection of patient-ventilator asynchrony should be improved: and then what? , 2016, Journal of thoracic disease.

[67]  Zhanqi Zhao,et al.  Multi-layer ventilation inhomogeneity in cystic fibrosis , 2016, Respiratory Physiology & Neurobiology.

[68]  C. Stocker,et al.  Ventilation and cardiac related impedance changes in children undergoing corrective open heart surgery , 2013, Physiological measurement.

[69]  G. Meurant The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .

[70]  S J Hamilton,et al.  Robust computation in 2D absolute EIT (a-EIT) using D-bar methods with the ‘exp’ approximation , 2017, Physiological measurement.

[71]  Andy Adler,et al.  Whither lung EIT: Where are we, where do we want to go and what do we need to get there? , 2012, Physiological measurement.

[72]  Raul Gonzalez Lima,et al.  Dynamic Imaging in Electrical Impedance Tomography of the Human Chest With Online Transition Matrix Identification , 2010, IEEE Transactions on Biomedical Engineering.

[73]  I Frerichs,et al.  Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma , 2016, Physiological measurement.

[74]  Salvatore Grasso,et al.  Physiological Effects of the Open Lung Approach in Patients with Early, Mild, Diffuse Acute Respiratory Distress Syndrome: An Electrical Impedance Tomography Study , 2015, Anesthesiology.

[75]  Jennifer L. Mueller,et al.  The ACE1 Electrical Impedance Tomography System for Thoracic Imaging , 2019, IEEE Transactions on Instrumentation and Measurement.

[76]  Thiago de C. Martins,et al.  Simulated Annealing with Partial Evaluation of Objective Function Applied to Electrical Impedance Tomography , 2011 .

[77]  P.A. Karjalainen,et al.  A Kalman filter approach to track fast impedance changes in electrical impedance tomography , 1998, IEEE Transactions on Biomedical Engineering.

[78]  Thiago de Castro Martins,et al.  Interval Simulated Annealing applied to Electrical Impedance Tomography image reconstruction with fast objective function evaluation , 2016, Comput. Math. Appl..

[79]  Jason H. T. Bates,et al.  Lung Mechanics: An Inverse Modeling Approach , 2009 .

[80]  D. Isaacson,et al.  Electrode models for electric current computed tomography , 1989, IEEE Transactions on Biomedical Engineering.

[81]  N. Weiler,et al.  Spatial and temporal heterogeneity of regional lung ventilation determined by electrical impedance tomography during pulmonary function testing. , 2012, Journal of applied physiology.

[82]  L. D. Faddeev Increasing Solutions of the Schroedinger Equation , 1966 .

[83]  Jari P. Kaipio,et al.  Simultaneous reconstruction of electrode contact impedances and internal electrical properties: I. Theory , 2002 .

[85]  Jari P. Kaipio,et al.  Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map , 2015 .

[86]  Knut Möller,et al.  Regional airway obstruction in cystic fibrosis determined by electrical impedance tomography in comparison with high resolution CT , 2013, Physiological measurement.

[87]  Jutta Bikowski,et al.  Direct numerical reconstruction of conductivities in three dimensions using scattering transforms , 2010, 1003.3764.

[88]  Jennifer L. Mueller,et al.  Direct 2-D Reconstructions of Conductivity and Permittivity From EIT Data on a Human Chest , 2015, IEEE Transactions on Medical Imaging.

[89]  B. M. Eyuboglu,et al.  In vivo imaging of cardiac related impedance changes , 1989, IEEE Engineering in Medicine and Biology Magazine.

[90]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[91]  Janet Stocks,et al.  Lung Function Tests in Neonates and Infants with Chronic Lung Disease: Global and Regional Ventilation Inhomogeneity , 2006, Pediatric pulmonology.

[92]  David Isaacson,et al.  Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography , 2004, IEEE Transactions on Medical Imaging.

[93]  Samuli Siltanen,et al.  Linear and Nonlinear Inverse Problems with Practical Applications , 2012, Computational science and engineering.

[94]  J. Bates,et al.  injurious ventilation in rats Pulmonary impedance and alveolar instability during , 2005 .

[95]  Jennifer L. Mueller,et al.  Effect of Domain Shape Modeling and Measurement Errors on the 2-D D-Bar Method for EIT , 2009, IEEE Transactions on Medical Imaging.

[96]  Thiago de Castro Martins,et al.  Electrical impedance tomography reconstruction through simulated annealing with total least square error as objective function , 2012, EMBC.

[97]  Effect of Trigger Sensitivity on Redistribution of Ventilation During Pressure Support Ventilation Detected by Electrical Impedance Tomography , 2015, Anesthesiology and pain medicine.

[98]  Giacomo Bellani,et al.  Regional distribution of air trapping in chronic obstructive pulmonary disease. , 2013, American journal of respiratory and critical care medicine.

[99]  L. A. Geddes,et al.  The impedance of stainless-steel electrodes , 1971, Medical and biological engineering.

[100]  V. Pollak Computation of the impedance characteristic of metal electrodes for biological investigations , 2006, Medical and biological engineering.

[101]  Horia D. Cornean,et al.  Towards a d-bar reconstruction method for three-dimensional EIT , 2006 .

[102]  Renato Seiji Tavares,et al.  Discretization Error and the EIT Forward Problem , 2014 .

[103]  A. Dietrich,et al.  Individualized positive end-expiratory pressure in obese patients during general anaesthesia: a randomized controlled clinical trial using electrical impedance tomography , 2017, British journal of anaesthesia.

[104]  Zhanqi Zhao,et al.  Effects of neurally adjusted ventilatory assist on air distribution and dead space in patients with acute exacerbation of chronic obstructive pulmonary disease , 2017, Critical Care.

[105]  B H Brown,et al.  Electrical impedance tomography (EIT): a review , 2003, Journal of medical engineering & technology.

[106]  Gérard Meurant Estimates of the l2 norm of the error in the conjugate gradient algorithm , 2005, Numerical Algorithms.

[107]  Nuutti Hyvönen,et al.  Simultaneous recovery of admittivity and body shape in electrical impedance tomography: An experimental evaluation , 2013 .

[108]  Erkki Somersalo,et al.  State Estimation in Time‐Varying Electrical Impedance Tomography , 1999 .

[109]  Kim Knudsen,et al.  The born approximation and Calderón's method for reconstruction of conductivities in 3-D , 2011 .

[110]  Renato Seiji Tavares,et al.  Influence of current injection pattern and electric potential measurement strategies in electrical impedance tomography , 2017 .

[111]  Thiago de Castro Martins,et al.  Image Reconstruction Using Interval Simulated Annealing in Electrical Impedance Tomography , 2012, IEEE Transactions on Biomedical Engineering.

[112]  J L Mueller,et al.  2D D-bar reconstructions of human chest and tank data using an improved approximation to the scattering transform. , 2010, Physiological measurement.

[113]  Thomas C. Ferrée,et al.  Weighted regularization in electrical impedance tomography with applications to acute cerebral stroke , 2002, IEEE Transactions on Medical Imaging.

[114]  N. Weiler,et al.  Regional lung function testing in children using electrical impedance tomography , 2018, Pediatric pulmonology.

[115]  B H Brown,et al.  The Sheffield data collection system. , 1987, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics.

[116]  J. Clark,et al.  Airway mechanics, gas exchange, and blood flow in a nonlinear model of the normal human lung. , 1998, Journal of applied physiology.

[117]  Marko Vauhkonen,et al.  Image reconstruction in time-varying electrical impedance tomography based on the extended Kalman filter , 2001 .

[118]  Jason H T Bates,et al.  Time dependence of recruitment and derecruitment in the lung: a theoretical model. , 2002, Journal of applied physiology.

[119]  Jennifer L. Mueller,et al.  A D-Bar Algorithm with A Priori Information for 2-Dimensional Electrical Impedance Tomography , 2016, SIAM J. Imaging Sci..

[120]  Andy Adler,et al.  Functional Validation and Comparison Framework for EIT Lung Imaging , 2014, PloS one.

[121]  Thiago de Castro Martins,et al.  EIT image regularization by a new Multi-Objective Simulated Annealing algorithm , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[122]  Samuli Siltanen,et al.  Direct Reconstructions of Conductivities from Boundary Measurements , 2002, SIAM J. Sci. Comput..

[123]  Elisa Francini Recovering a complex coefficient in a planar domain from the Dirichlet-to-Neumann map , 2000 .

[124]  Keith D. Paulsen,et al.  On optimal current patterns for electrical impedance tomography , 2005, IEEE Transactions on Biomedical Engineering.

[125]  P. Hansen,et al.  A Direct Numerical Reconstruction Algorithm for the 3D Calderón Problem , 2011 .

[126]  Matti Lassas,et al.  D-Bar Method for Electrical Impedance Tomography with Discontinuous Conductivities , 2007, SIAM J. Appl. Math..

[127]  J. Kaipio,et al.  RECONSTRUCTION OF DOMAIN BOUNDARY AND CONDUCTIVITY IN ELECTRICAL IMPEDANCE TOMOGRAPHY USING THE APPROXIMATION ERROR APPROACH , 2011 .

[128]  R. Novikov,et al.  Multidimensional inverse spectral problem for the equation —Δψ + (v(x) — Eu(x))ψ = 0 , 1988 .

[129]  J. Borges,et al.  Electrical impedance tomography in acute respiratory distress syndrome , 2018, Critical Care.

[130]  J.P. Kaipio,et al.  Three-dimensional electrical impedance tomography based on the complete electrode model , 1999, IEEE Transactions on Biomedical Engineering.

[131]  Nuutti Hyvönen,et al.  Smoothened Complete Electrode Model , 2017, SIAM J. Appl. Math..

[132]  Francisco Vázquez,et al.  A new approach for sparse matrix vector product on NVIDIA GPUs , 2011, Concurr. Comput. Pract. Exp..

[133]  T. Riedel,et al.  Effect of Different Breathing Aids on Ventilation Distribution in Adults with Cystic Fibrosis , 2014, PloS one.

[134]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[135]  B. Simon,et al.  A comprehensive equation for the pulmonary pressure-volume curve. , 1998, Journal of applied physiology.

[136]  Marek Ancukiewicz,et al.  Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. , 2009, The New England journal of medicine.

[137]  Gunther Uhlmann,et al.  Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .

[138]  Thiago de Castro Martins,et al.  Electrical impedance tomography reconstruction through simulated annealing with multi-stage partially evaluated objective functions , 2013, EMBC.

[139]  R. W. Lau,et al.  The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. , 1996, Physics in medicine and biology.

[140]  Giacomo Grasselli,et al.  Bedside selection of positive end-expiratory pressure by electrical impedance tomography in hypoxemic patients: a feasibility study , 2017, Annals of Intensive Care.

[141]  Wei Wang,et al.  Influence of tidal volume and positive end-expiratory pressure on ventilation distribution and oxygenation during one-lung ventilation , 2018, Physiological measurement.

[142]  Jan Karsten,et al.  Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study , 2015, Critical Care.

[143]  Katsuhiko Ogata,et al.  Discrete-time control systems , 1987 .

[144]  Gerardo Tusman,et al.  Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse. , 2012, Journal of applied physiology.

[145]  G Hahn,et al.  Monitoring perioperative changes in distribution of pulmonary ventilation by functional electrical impedance tomography , 1998, Acta anaesthesiologica Scandinavica.

[146]  Mehrdad Tamiz,et al.  Multi-objective meta-heuristics: An overview of the current state-of-the-art , 2002, Eur. J. Oper. Res..

[147]  Melody Alsaker,et al.  Use of an optimized spatial prior in D-bar reconstructions of EIT tank data , 2018 .

[148]  Zhanqi Zhao,et al.  Positive End-expiratory Pressure Titration after Alveolar Recruitment Directed by Electrical Impedance Tomography , 2015, Chinese medical journal.

[149]  A. Nachman,et al.  Reconstructions from boundary measurements , 1988 .

[150]  Knut Möller,et al.  Positioning of electrode plane systematically influences EIT imaging , 2015, Physiological measurement.

[151]  J. Seo,et al.  Detection of admittivity anomaly on high-contrast heterogeneous backgrounds using frequency difference EIT , 2015, Physiological measurement.

[152]  Paul J Hadwin,et al.  Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results , 2015 .

[153]  Keith A. Seffen,et al.  A SIMULATED ANNEALING ALGORITHM FOR MULTIOBJECTIVE OPTIMIZATION , 2000 .

[154]  G. Golub,et al.  Matrices, Moments and Quadrature with Applications , 2009 .

[155]  Jennifer L. Mueller,et al.  Dynamic optimized priors for D-bar reconstructions of human ventilation using electrical impedance tomography , 2019, J. Comput. Appl. Math..

[156]  B. H. Brown,et al.  Model for the dielectric properties of human lung tissue against frequency and air content , 1997, Medical and Biological Engineering and Computing.

[157]  Knut Möller,et al.  Comparison of different functional EIT approaches to quantify tidal ventilation distribution , 2018, Physiological measurement.

[158]  Matthias Kott,et al.  Dynamics of regional lung aeration determined by electrical impedance tomography in patients with acute respiratory distress syndrome , 2012, Multidisciplinary Respiratory Medicine.

[159]  J. Karsten,et al.  Positive end‐expiratory pressure titration at bedside using electrical impedance tomography in post‐operative cardiac surgery patients , 2015, Acta anaesthesiologica Scandinavica.

[160]  Steffen Leonhardt,et al.  Lung pathologies analyzed with multi-frequency electrical impedance tomography: Pilot animal study , 2018, Respiratory Physiology & Neurobiology.

[161]  Renato Seiji Tavares,et al.  GPU acceleration of absolute EIT image reconstruction using simulated annealing , 2017, Biomed. Signal Process. Control..

[162]  Andy Adler,et al.  In Vivo Impedance Imaging With Total Variation Regularization , 2010, IEEE Transactions on Medical Imaging.

[163]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[164]  J. Nagaraju,et al.  A multifrequency Electrical Impedance Tomography (EIT) system for biomedical imaging , 2012, 2012 International Conference on Signal Processing and Communications (SPCOM).

[165]  Y. J. Lee,et al.  Dynamic image reconstruction in electrical impedance tomography with known internal structures , 2002 .

[166]  Andreas D. Waldmann,et al.  Regional expiratory time constants in severe respiratory failure estimated by electrical impedance tomography: a feasibility study , 2018, Critical Care.

[167]  U. Müller-Lisse,et al.  EIT based pulsatile impedance monitoring during spontaneous breathing in cystic fibrosis , 2017, Physiological Measurement.

[168]  E. Stear,et al.  The simultaneous on-line estimation of parameters and states in linear systems , 1976 .

[169]  G. Rubenfeld,et al.  Fifty Years of Research in ARDS., The Epidemiology of Acute Respiratory Distress Syndrome. A 50th Birthday Review , 2017, American journal of respiratory and critical care medicine.

[170]  S J Hamilton,et al.  A direct D-bar reconstruction algorithm for recovering a complex conductivity in 2D , 2012, Inverse problems.

[171]  Jari P. Kaipio,et al.  Construction of anatomy-based priors with anisotropic characteristics with application to electrical impedance tomography , 1998, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286).

[172]  David Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[173]  Jari P. Kaipio,et al.  Nonstationary approximation error approach to imaging of three-dimensional pipe flow: experimental evaluation , 2011 .

[174]  P. Hua,et al.  Finite element modeling of electrode-skin contact impedance in electrical impedance tomography , 1993, IEEE Transactions on Biomedical Engineering.

[175]  R. Patterson,et al.  Non-invasive determination of absolute lung resistivity in adults using electrical impedance tomography , 2010, Physiological measurement.

[176]  Thiago de Castro Martins,et al.  Electrical impedance tomography reconstruction through Simulated Annealing with incomplete evaluation of the objective function , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.