An iterative state-space component modal synthesis approach for damped systems

Abstract Efficiently calculating the high precision modal parameters and/or reduce-order model of large-scale and/or complicated damped structures are important in engineering applications such as optimal design, model modification and updating tasks. In this paper, an iterative procedure based state-space component modal synthesis method is developed to address the problem. The Kron’s substructuring method is modified into a state-space form first to include damping effects and the defectiveness of components and global system. Then an iterative scheme is developed to seek all desired complex eigen-pairs simultaneously in one round of iterations without complex operations. The consistency of the proposed method is proved and the convergency is briefly discussed for integrity. A detailed implementation is given for reference. Compared with other methods for solving modal parameters and/or model order reduction, the proposed method has such merits as high computational efficiency and still in a substructuring scheme. Numerical examples show that the proposed method can provide highly accurate results with low computational cost.

[1]  M. Bampton,et al.  Coupling of substructures for dynamic analyses. , 1968 .

[2]  R. Craig,et al.  Free-interface methods of substructure coupling for dynamic analysis , 1976 .

[3]  G. Zheng,et al.  Nonlinear vibration analysis of spacecraft with local nonlinearity , 2010 .

[4]  G. T. Zheng,et al.  Component Synthesis Method for Transient Response of Nonproportionally Damped Structures , 2010 .

[5]  B. Tabarrok,et al.  ON KRON'S EIGENVALUE PROCEDURE AND RELATED METHODS OF FREQUENCY ANALYSIS , 1968 .

[6]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[7]  M. Friswell,et al.  Model reduction using dynamic and iterated IRS techniques , 1995 .

[8]  Daniel Rixen,et al.  Updating component reduction bases of static and vibration modes using preconditioned iterative techniques , 2013 .

[9]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[10]  G. T. Zheng,et al.  Improved Component-Mode Synthesis for Nonclassically Damped Systems , 2008 .

[11]  Jack J. Dongarra,et al.  A set of level 3 basic linear algebra subprograms , 1990, TOMS.

[12]  R. Craig,et al.  Component mode synthesis for model order reduction of nonclassicallydamped systems , 1989 .

[13]  Christophe Pierre,et al.  BASEBAND METHODS OF COMPONENT MODE SYNTHESIS FOR NON-PROPORTIONALLY DAMPED SYSTEMS , 2003 .

[14]  Maenghyo Cho,et al.  Iterative method for dynamic condensation combined with substructuring scheme , 2008 .

[15]  Z. Qu,et al.  New Structural Dynamic Condensation Method for Finite Element Models , 1998 .

[16]  M. Friswell,et al.  THE CONVERGENCE OF THE ITERATED IRS METHOD , 1998 .

[17]  D. Rixen A dual Craig-Bampton method for dynamic substructuring , 2004 .

[18]  Thomas Gmür,et al.  A subspace iteration algorithm for the eigensolution of large structures subject to non-classical viscous damping , 2000 .

[19]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[20]  R. Guyan Reduction of stiffness and mass matrices , 1965 .

[21]  Edward L. Wilson,et al.  Numerical methods in finite element analysis , 1976 .

[22]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[23]  Y. Soucy,et al.  Damping synthesis using complex substructure modes and a Hermitian system representation , 1985 .

[24]  W. Hurty Dynamic Analysis of Structural Systems Using Component Modes , 1965 .

[25]  Maenghyo Cho,et al.  Improvement of reduction method combined with sub‐domain scheme in large‐scale problem , 2007 .

[26]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[27]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[28]  Thomas J. R. Hughes,et al.  A reduction scheme for problems of structural dynamics , 1976 .

[29]  Luis E. Suarez,et al.  Dynamic Condensation Approach for Nonclassically Damped Structures , 1999 .

[30]  Fabrizio Scarpa,et al.  Novel parametric reduced order model for aeroengine blade dynamics , 2015 .

[31]  Hongping Zhu,et al.  IMPROVED SUBSTRUCTURING METHOD FOR EIGENSOLUTIONS OF LARGE-SCALE STRUCTURES , 2009 .

[32]  Z. Qu,et al.  Insight into the dynamic condensation technique of non-classically damped models , 2004 .

[33]  F. Xi,et al.  Component Model Parameter Updating for Landing Gear Linkages with Flexible Joints , 2015 .

[34]  S. Rubin Improved Component-Mode Representation for Structural Dynamic Analysis , 1975 .

[35]  Roy R. Craig,et al.  Structural Dynamics: An Introduction to Computer Methods , 1981 .

[36]  Roy R. Craig,et al.  State-variable models of structures having rigid-body modes , 1990 .

[37]  J. Kirkhope,et al.  Complex component mode synthesis for damped systems , 1995 .

[38]  Jie Cui,et al.  A simultaneous iterative procedure for the Kron's component modal synthesis approach , 2016 .

[39]  R. Craig A review of time-domain and frequency-domain component mode synthesis method , 1985 .

[40]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[41]  J. Qiu,et al.  EXACT MODAL SYNTHESIS TECHNIQUES USING RESIDUAL CONSTRAINT MODES , 1997 .

[42]  Walter C. Hurty,et al.  Vibrations of Structural Systems by Component Mode Synthesis , 1960 .

[43]  R. Lin,et al.  Improvement on the iterated IRS method for structural eigensolutions , 2004 .

[44]  Tao Wang,et al.  A real decoupled method and free interface component mode synthesis methods for generally damped systems , 2014 .

[45]  Noureddine Bouhaddi,et al.  Component mode synthesis (CMS) based on an enriched ritz approach for efficient structural optimization , 2006 .

[46]  Michiel E. Hochstenbach,et al.  A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control , 2013 .

[47]  Yong Xia,et al.  An iterative substructuring approach to the calculation of eigensolution and eigensensitivity , 2011 .

[48]  D. Rixen,et al.  Generalized Methodology for Assembly and Reduction of Component Models for Dynamic Substructuring , 2011 .

[49]  Jinwu Xiang,et al.  Synthesis Technique for the Nonclassically Damped Structures Using Real Schur Vectors , 1999 .

[50]  Zheng-Shan Liu,et al.  Iterative-Order-Reduction Substructuring Method for Dynamic Condensation of Finite Element Models , 2011 .

[51]  de A Bram Kraker,et al.  Rubin's CMS reduction method for general state-space models , 1996 .

[52]  D. Rixen,et al.  General Framework for Dynamic Substructuring: History, Review and Classification of Techniques , 2008 .

[53]  Yi-Qing Ni,et al.  Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower , 2009 .

[54]  G. T. Zheng,et al.  Parametric Study for Dynamics of Spacecraft with Local Nonlinearities , 2010 .

[55]  G. Ren,et al.  A REFORMULATED ARNOLDI ALGORITHM FOR NON-CLASSICALLY DAMPED EIGENVALUE PROBLEMS , 1997 .

[56]  Z. Qu,et al.  MODEL CONDENSATION FOR NON-CLASSICALLY DAMPED SYSTEMS-PART II: ITERATIVE SCHEMES FOR DYNAMIC CONDENSATION , 2003 .