Processing of Yield Map Data

Abstract.Yield maps reflect systematic and random sources of yield variation as well as numerous errors caused by the harvest and mapping procedures used. A general framework for processing of multi-year yield map data was developed. Steps included (1) raw data screening, (2) standardization, (3) interpolation, (4) classification of multi-year yield maps, (5) post-classification spatial filtering to create spatially contiguous yield classes, and (6) statistical evaluation of classification results. The techniques developed allow more objective mapping of yield zones, which are an important data layer in algorithms for prescribing variable rates of production inputs.

[1]  J. V. Stafford,et al.  Mapping and interpreting the yield variation in cereal crops , 1996 .

[2]  R. M. Lark,et al.  Forming Spatially Coherent Regions by Classification of Multi-Variate Data: An Example from the Analysis of Maps of Crop Yield , 1998, Int. J. Geogr. Inf. Sci..

[3]  Achim Dobermann,et al.  Geostatistical Integration of Yield Monitor Data and Remote Sensing Improves Yield Maps , 2004 .

[4]  R. Webster,et al.  Statistical Methods in Soil and Land Resource Survey. , 1990 .

[5]  R. M. Lark,et al.  A Method to Investigate Within‐Field Variation of the Response of Combinable Crops to an Input , 2003 .

[6]  Thomas S. Colvin,et al.  An Evaluation of the Response of Yield Monitors and Combines to Varying Yields , 2002, Precision Agriculture.

[7]  Achim Dobermann,et al.  Creating Spatially Contiguous Yield Classes for Site‐Specific Management , 2003 .

[8]  M. Roubens Fuzzy clustering algorithms and their cluster validity , 1982 .

[9]  L. T. Evans Crop evolution, adaptation, and yield , 1993 .

[10]  R. Webster,et al.  A geostatistical basis for spatial weighting in multivariate classification , 1989 .

[11]  Viacheslav I. Adamchuk,et al.  Classification of Crop Yield Variability in Irrigated Production Fields , 2003 .

[12]  Alex. B. McBratney,et al.  A Parametric Transfer Function for Grain-Flow Within a Conventional Combine Harvester , 2002, Precision Agriculture.

[13]  Achim Dobermann,et al.  Screening Yield Monitor Data Improves Grain Yield Maps , 2004 .

[14]  Alex. B. McBratney,et al.  An Approach to Deconvoluting Grain-Flow within a Conventional Combine Harvester using a Parametric Transfer Function , 2004, Precision Agriculture.

[15]  J. Stafford,et al.  An algorithm for automatic detection and elimination of defective yield data. , 2003 .

[16]  S. Blackmore The interpretation of trends from multiple yield maps , 2000 .

[17]  Lei Tian,et al.  Time Shift Evaluation to Improve Yield Map Quality , 2001 .

[18]  Thomas S. Colvin,et al.  Grain Yield Mapping: Yield Sensing, Yield Reconstruction, and Errors , 2002, Precision Agriculture.

[19]  Simon Blackmore,et al.  Remedial Correction of Yield Map Data , 2004, Precision Agriculture.

[20]  J. V. Stafford,et al.  Limitations on the spatial resolution of yield mapping for combinable crops , 1997 .

[21]  A. B. McBratney,et al.  Identifying Potential Within-Field Management Zones from Cotton-Yield Estimates , 2002, Precision Agriculture.

[22]  T. Arkebauer,et al.  Hybrid-maize—a maize simulation model that combines two crop modeling approaches , 2004 .

[23]  David Lamb,et al.  PA—Precision Agriculture: Remote-Sensing and Mapping of Weeds in Crops , 2001 .

[24]  Randal K. Taylor,et al.  USING YIELD MONITOR DATA TO DETERMINE SPATI AL CROP PRODUCTION POTENTIAL , 2001 .

[25]  R. Lark,et al.  Information on within-field variability from sequences of yield maps: multivariate classification as a first step of interpretation , 1998, Nutrient Cycling in Agroecosystems.

[26]  R. Lark,et al.  Classification as a first step in the interpretation of temporal and spatial variation of crop yield , 1997 .