Landauer's Principle and Divergenceless Dynamical Systems

Landauer's principle is one of the pillars of the physics of information. It con- stitutes one of the foundations behind the idea that "information is physical". Landauer's principle establishes the smallest amount of energy that has to be dissipated when one bit of information is erased from a computing device. Here we explore an extended Landauer- like principle valid for general dynamical systems (not necessarily Hamiltonian) governed by divergenceless phase space flows.

[1]  Harvey Rubin The Touchstone of Life: Molecular Information, Cell Communication, and the Foundations of Life , 1999, Annals of Internal Medicine.

[2]  A. Plastino,et al.  Dynamical thermostatting, divergenceless phase-space flows, and KBB systems , 1999 .

[3]  Philip J. Morrison,et al.  Quantum mechanics as a generalization of Nambu dynamics to the Weyl-Wigner formalism , 1991 .

[4]  Andreas Daffertshofer,et al.  Forgetting and gravitation : From Landauer's principle to Tolman's temperature , 2007 .

[5]  R. M. Yamaleev Generalized Lorentz-Force Equations , 2001 .

[6]  B. Frieden Science from Fisher Information , 2004 .

[7]  Partha Guha,et al.  Applications of Nambu mechanics to systems of hydrodynamical type , 2002 .

[8]  A. Plastino,et al.  Dynamical thermostatting and statistical ensembles , 2005 .

[9]  A. R. Plastino,et al.  MINIMUM KULLBACK ENTROPY APPROACH TO THE FOKKER-PLANCK EQUATION , 1997 .

[10]  A Daffertshofer,et al.  Liouville dynamics and the conservation of classical information. , 2004, Physical review letters.

[11]  A. R. Plastino,et al.  Maximum entropy and approximate descriptions of pure states , 1993 .

[12]  M. B. Plenio,et al.  The physics of forgetting: Landauer's erasure principle and information theory , 2001, quant-ph/0103108.

[13]  Andreas Daffertshofer,et al.  Landauer's principle and non-equilibrium statistical ensembles , 2008 .

[14]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[15]  A. R. Plastino,et al.  Statistical treatment of autonomous systems with divergencelless flows , 1996 .

[16]  B. Frieden,et al.  Lagrangians of physics and the game of Fisher-information transfer. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  J. Perez,et al.  Developments in Nambu mechanics , 1994 .

[18]  David A. Lavis,et al.  Physics from Fisher information , 2002 .

[19]  Christian Beck Statistics of three-dimensional lagrangian turbulence. , 2007, Physical review letters.

[20]  Andreas Daffertshofer,et al.  Landauer's principle and the conservation of information , 2005 .

[21]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[22]  A. Wehrl General properties of entropy , 1978 .

[23]  Claudia Zander,et al.  Entanglement and the speed of evolution of multi-partite quantum systems , 2007 .

[24]  Takuya Yamano,et al.  Thermodynamical and Informational Structure of Superstatistics , 2006 .

[25]  Seth Lloyd,et al.  Obituary: Rolf Landauer (1927-99) , 1999, Nature.

[26]  Bernard H. Soffer,et al.  Information-theoretic significance of the Wigner distribution , 2006 .

[27]  H Whiting Maxwell's demons. , 1885, Science.

[28]  C. Beck,et al.  Superstatistical generalization of the work fluctuation theorem , 2004 .

[29]  E. H. Kerner Note on Hamiltonian format of Lotka-Volterra dynamics , 1990 .

[30]  S. Smale,et al.  ON THE PROBLEM OF REVIVING THE ERGODIC HYPOTHESIS OF BLOTZMANN AND BIRKHOFF , 1980 .

[31]  Paul Adrien Maurice Dirac Generalized Hamiltonian dynamics , 1950 .

[32]  E. T. Jaynes,et al.  Papers on probability, statistics and statistical physics , 1983 .

[33]  A Daffertshofer,et al.  Classical no-cloning theorem. , 2002, Physical review letters.

[34]  Michael J. W. Hall,et al.  Universal geometric approach to uncertainty, entropy, and information , 1999 .

[35]  W. H. Zurek Complexity, Entropy and the Physics of Information , 1990 .