A General Definition of Residuals

RESIDUALS are now widely used to assess the adequacy of linear models; see Anscombe (1961) for a systematic discussion of significance tests based on residuals, and for references to earlier work. A second and closely related application of residuals is in time-series analysis, for example in examining the fit of an autoregressive model. In the context of normal-theory linear models, the n x 1 vector of random variables Y is assumed to have the form

[1]  D. Cox,et al.  The statistical analysis of series of events , 1966 .

[2]  M Zelen,et al.  Estimation of exponential survival probabilities with concomitant information. , 1965, Biometrics.

[3]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[4]  L. Shenton,et al.  Higher Moments of a Maximum‐Likelihood Estimate , 1963 .

[5]  Kenneth E. Iverson,et al.  A programming language , 1899, AIEE-IRE '62 (Spring).

[6]  L. R. Shenton,et al.  The bias of moment estimators with an application to the negative binomial distribution , 1962 .

[7]  F. J. Anscombe,et al.  Examination of Residuals , 1961 .

[8]  P. Moore Transformations to Normality Using Fractional Powers of the Variable , 1957 .

[9]  J. Haldane,et al.  THE SAMPLING DISTRIBUTION OF A MAXIMUM-LIKELIHOOD ESTIMATE , 1956 .

[10]  A. Bernard,et al.  The plotting of observations on probability-paper , 1955 .

[11]  E. S. Pearson Biometrika tables for statisticians , 1967 .

[12]  Gunnar Blom,et al.  TRANSFORMATIONS OF THE BINOMIAL, NEGATIVE BINOMIAL, POISSON AND χ2 DISTRIBUTIONS , 1954 .

[13]  Gerald J. Lieberman,et al.  Use of Normal Probability Paper , 1954 .

[14]  M. Bartlett,et al.  APPROXIMATE CONFIDENCE INTERVALSMORE THAN ONE UNKNOWN PARAMETER , 1953 .

[15]  M. Bartlett,et al.  APPROXIMATE CONFIDENCE INTERVALS , 1953 .

[16]  H. D. Patterson,et al.  Analysis of Factorial Arrangements when the Data are Proportions , 1952 .

[17]  J. Durbin,et al.  Testing for serial correlation in least squares regression. II. , 1950, Biometrika.

[18]  N. L. Johnson,et al.  The probability integral transformation when parameters are estimated from the sample. , 1948, Biometrika.