Optical fiber nanowires and microwires: fabrication and applications

Microwires and nanowires have been manufactured by using a wide range of bottom-up techniques such as chemical or physical vapor deposition and top-down processes such as fiber drawing. Among these techniques, the manufacture of wires from optical fibers provides the longest, most uniform and robust nanowires. Critically, the small surface roughness and the high-homogeneity associated with optical fiber nanowires (OFNs) provide low optical loss and allow the use of nanowires for a wide range of new applications for communications, sensing, lasers, biology, and chemistry. OFNs offer a number of outstanding optical and mechanical properties, including (1) large evanescent fields, (2) high-nonlinearity, (3) strong confinement, and (4) low-loss interconnection to other optical fibers and fiberized components. OFNs are fabricated by adiabatically stretching optical fibers and thus preserve the original optical fiber dimensions at their input and output, allowing ready splicing to standard fibers. A review of the manufacture of OFNs is presented, with a particular emphasis on their applications. Three different groups of applications have been envisaged: (1) devices based on the strong confinement or nonlinearity, (2) applications exploiting the large evanescent field, and (3) devices involving the taper transition regions. The first group includes supercontinuum generators, a range of nonlinear optical devices, and optical trapping. The second group comprises knot, loop, and coil resonators and their applications, sensing and particle propulsion by optical pressure. Finally, mode filtering and mode conversion represent applications based on the taper transition regions. Among these groups of applications, devices exploiting the OFN-based resonators are possibly the most interesting; because of the large evanescent field, when OFNs are coiled onto themselves the mode propagating in the wire interferes with itself to give a resonator. In contrast with the majority of high-Q resonators manufactured by other means, the OFN microresonator does not have major issues with input-output coupling and presents a completely integrated fiberized solution. OFNs can be used to manufacture loop and coil resonators with Q factors that, although still far from the predicted value of 10. The input-output pigtails play a major role in shaping the resonator response and can be used to maximize the Q factor over a wide range of coupling parameters. Finally, temporal stability and robustness issues are discussed, and a solution to optical degradation issues is presented.

[1]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[2]  Cai,et al.  Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system , 2000, Physical review letters.

[3]  Richard J. Black,et al.  Tapered single-mode fibres and devices. II. Experimental and theoretical quantification , 1991 .

[4]  James P. Gordon,et al.  Radiation Forces and Momenta in Dielectric Media , 1973 .

[5]  Single laser beam fiber optic trap , 2001 .

[6]  R D Harris,et al.  Sensitivity enhancement of integrated optical sensors by use of thin high-index films. , 1999, Applied optics.

[7]  D. Marcuse,et al.  Vector modes of D-shaped fibres , 1992 .

[8]  Chang-Bong Kim,et al.  Measurement of the refractive index of liquids at 1.3 and 1.5 micron using a fibre optic Fresnel ratio meter , 2004 .

[9]  Dietrich Marcuse,et al.  Mode conversion caused by diameter changes of a round dielectric waveguide , 1969 .

[10]  S. Leon-Saval,et al.  Supercontinuum generation in submicron fibre waveguides. , 2004, Optics express.

[11]  Amadeu Griol,et al.  Slot-waveguide biochemical sensor. , 2007, Optics letters.

[12]  Dongjoo Lee,et al.  Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation , 2005 .

[13]  Hideyuki Sotobayashi,et al.  Highly nonlinear bismuth-oxide fiber for smooth supercontinuum generation at 1.5 microm. , 2004, Optics express.

[14]  Gilberto Brambilla,et al.  An embedded optical nanowire loop resonator refractometric sensor. , 2008, Optics express.

[15]  Shui-Tong Lee,et al.  Fabrication of Germanium‐Filled Silica Nanotubes and Aligned Silica Nanofibers , 2003 .

[16]  D. Grier A revolution in optical manipulation , 2003, Nature.

[17]  L. Tong,et al.  Polymer single-nanowire optical sensors. , 2008, Nano letters.

[18]  S Kawata,et al.  Movement of micrometer-sized particles in the evanescent field of a laser beam. , 1992, Optics letters.

[19]  W. H. Wilson,et al.  Predicted Optical Properties for Clear Natural Water , 1972 .

[20]  Chung-Yen Chao,et al.  Design and optimization of microring resonators in biochemical sensing applications , 2006, Journal of Lightwave Technology.

[21]  Limin Tong,et al.  Assembly of silica nanowires on silica aerogels for microphotonic devices. , 2005, Nano letters.

[22]  Dongsheng Xu,et al.  ELECTROCHEMICALLY INDUCED SOL-GEL PREPARATION OF SINGLE-CRYSTALLINE TIO2NANOWIRES , 2002 .

[23]  Hongying Zhu,et al.  Refractometric Sensors for Lab-on-a-Chip Based on Optical Ring Resonators , 2007, IEEE Sensors Journal.

[24]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[25]  B. Eggleton,et al.  Thinnest optical waveguide: experimental test. , 2007, Optics letters.

[26]  P. Petropoulos,et al.  Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Chia-Chun Chen,et al.  Large‐Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires , 2000 .

[28]  C. D. Hussey,et al.  Short low-loss nanowire tapers on singlemode fibres , 2005 .

[29]  Shui-Tong Lee,et al.  Oriented silicon carbide nanowires: Synthesis and field emission properties , 2000 .

[30]  Timothy A. Birks,et al.  Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source , 2002 .

[31]  Fei Xu,et al.  Demonstration of a refractometric sensor based on optical microfiber coil resonator , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[32]  Axel Scherer,et al.  Lithographically Fabricated Optical Cavities for Refractive Index Sensing , 2005 .

[33]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[34]  M. Harada,et al.  Formation of Huge Length Silica Nanotubes by a Templating Mechanism in the Laurylamine/Tetraethoxysilane System , 1999 .

[35]  Rick Trebino,et al.  Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires. , 2005, Optics express.

[36]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[37]  Xiaobo Xing,et al.  Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate). , 2008, Optics express.

[38]  G. Meng,et al.  Catalytic growth of semiconducting In2O3 nanofibers , 2001 .

[39]  Peter Lebedew,et al.  Untersuchungen über die Druckkräfte des Lichtes , 1901 .

[40]  S. Moon,et al.  Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber , 2005, IEEE Photonics Technology Letters.

[41]  Fei Xu,et al.  Optimized Design of Microcoil Resonators , 2007, Journal of Lightwave Technology.

[42]  Robert R. Alfano,et al.  Emission in the Region 4000 to 7000 Å Via Four-Photon Coupling in Glass , 1970 .

[43]  Gilberto Brambilla,et al.  Embedding optical microfiber coil resonators in Teflon. , 2007, Optics letters.

[44]  M. Litorja,et al.  Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy. , 1997, Applied optics.

[45]  Gilberto Brambilla,et al.  Fabrication of optical fibre nanowires and their optical and mechanical characterisation , 2006 .

[46]  Limin Tong,et al.  Effect of Host Polymer on Microfiber Resonator , 2007, IEEE Photonics Technology Letters.

[47]  G. S. Murugan,et al.  Optical manipulation of microspheres along a subwavelength optical wire. , 2007, Optics letters.

[48]  John D. Love,et al.  Spot size, adiabaticity and diffraction in tapered fibres , 1987 .

[49]  James S. Wilkinson,et al.  Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide , 2000 .

[50]  M. Sumetsky,et al.  Optical fiber microcoil resonators. , 2004, Optics express.

[51]  Akagi,et al.  Helical polyacetylene synthesized with a chiral nematic reaction field , 1998, Science.

[52]  G. S. Murugan,et al.  Optical Propulsion of Individual and Clustered Microspheres along Sub-Micron Optical Wires , 2008 .

[53]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[54]  Makoto Harada,et al.  Surfactant‐Mediated Fabrication of Silica Nanotubes , 2000 .

[55]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[56]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[57]  D. Dobrev,et al.  Single‐Crystalline Copper Nanowires Produced by Electrochemical Deposition in Polymeric Ion Track Membranes , 2001 .

[58]  Qing Yang,et al.  Photonic nanowires directly drawn from bulk glasses. , 2006, Optics express.

[59]  Charles R. Martin,et al.  Sol−Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures , 1997 .

[60]  Limin Tong,et al.  Demonstration of optical microfiber knot resonators , 2006 .

[61]  P. Sarro,et al.  Microfluidic sensor based on integrated optical hollow waveguides. , 2004, Optics letters.

[62]  M. Mansuripur,et al.  Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. , 2005, Optics letters.

[63]  M. Dagenais,et al.  High sensitivity evanescent field fiber Bragg grating sensor , 2005, IEEE Photonics Technology Letters.

[64]  Zu Rong Dai,et al.  Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. , 2002, Journal of the American Chemical Society.

[65]  Hejun Li,et al.  Synthesis of “A β-SiC nanorod within a SiO2 nanorod” one dimensional composite nanostructures , 1998 .

[66]  K. Takayanagi,et al.  GOLD NANOBRIDGE STABILIZED BY SURFACE STRUCTURE , 1997 .

[67]  Fei Xu,et al.  Manufacture of 3-D Microfiber Coil Resonators , 2007, IEEE Photonics Technology Letters.

[68]  D. Meschede,et al.  Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers. , 2007, Optics express.

[69]  Gilberto Brambilla,et al.  Preservation of Micro-Optical Fibers by Embedding , 2008 .

[70]  Charles R. Kurkjian,et al.  Acid stripping of fused silica optical fibers without strength degradation , 1997 .

[71]  Kenji Hiruma,et al.  Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers , 1992 .

[72]  Fam Le Kien,et al.  Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence. , 2007, Optics express.

[73]  D C Johnson,et al.  Compact, low-loss, fused biconical taper couplers: overcoupled operation and antisymmetric supermode cutoff. , 1987, Optics letters.

[74]  Christophe Peucheret,et al.  10 Gbit/s transmission over air-guiding photonic bandgap fibre at 1550 nm , 2005 .

[75]  Xudong Fan,et al.  Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides , 2006 .

[76]  Jian Yang,et al.  Fabrication of mesoporous CdS nanorods by chemical etching , 2003 .

[77]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[78]  K. Taira,et al.  Highly nonlinear bismuth oxide-based glass fibres for all-optical signal processing , 2002 .

[79]  Jing Zhu,et al.  A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture , 2001 .

[80]  O. Schwelb,et al.  Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview , 2004, Journal of Lightwave Technology.

[81]  G. M. Hale,et al.  Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. , 1973, Applied optics.

[82]  Anton Husakou,et al.  Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses , 2003 .

[83]  D.J. DiGiovanni,et al.  The microfiber loop resonator: theory, experiment, and application , 2006, Journal of Lightwave Technology.

[84]  J Fedeli,et al.  Optical manipulation of microparticles and cells on silicon nitride waveguides. , 2005, Optics express.

[85]  Gilberto Brambilla,et al.  Ultra-low-loss optical fiber nanotapers. , 2004, Optics express.

[86]  Limin Tong,et al.  Supported microfiber loops for optical sensing. , 2008, Optics express.

[87]  R. Windeler,et al.  Optical liquid ring resonator sensor. , 2007, Optics express.

[88]  D. Donlagic,et al.  In-line higher order mode filters based on long highly uniform fiber tapers , 2006, Journal of Lightwave Technology.

[89]  M. Sumetsky,et al.  Basic Elements for Microfiber Photonics: Micro/Nanofibers and Microfiber Coil Resonators , 2008, Journal of Lightwave Technology.

[90]  G. L. Clarke,et al.  Laboratory Analysis of the Selective Absorption of Light by Sea Water , 1939 .

[91]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[92]  Joel Villatoro,et al.  Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers. , 2005, Optics express.

[93]  Ming Cheng,et al.  Mechanical Properties of Kevlar® KM2 Single Fiber , 2005 .

[94]  Harry E. Ruda,et al.  Growth of silicon nanowires via gold/silane vapor–liquid-solid reaction , 1997 .

[95]  Xudong Fan,et al.  On the performance quantification of resonant refractive index sensors. , 2008, Optics express.

[96]  Jing Zhu,et al.  Coating of carbon nanotubes with tungsten by physical vapor deposition , 2000 .

[97]  Long-wavelength supercontinuum generation in bismuth-silicate fibres , 2006 .

[98]  Zhaohui Hu,et al.  Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe. , 2004, Optics express.

[99]  S Kawata,et al.  Optically driven Mie particles in an evanescent field along a channeled waveguide. , 1996, Optics letters.

[100]  François Ladouceur,et al.  Roughness, inhomogeneity, and integrated optics , 1997 .

[101]  Kenneth T. V. Grattan,et al.  Physical analysis of teflon coated capillary waveguides , 1998 .

[102]  Peter Horak,et al.  Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator. , 2007, Applied optics.

[103]  William J. Wadsworth,et al.  Supercontinuum generation in tapered fibers. , 2000, Optics letters.

[104]  V. I. Balykin,et al.  Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber , 2004 .

[105]  Yongmin Jung,et al.  Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter. , 2008, Optics express.

[106]  J Greve,et al.  Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor. , 2004, Biosensors & bioelectronics.

[107]  Zhong Lin Wang,et al.  Silica Nanotubes and Nanofiber Arrays , 2000 .

[108]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[109]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[110]  Ian M. White,et al.  Refractometric sensors based on microsphere resonators , 2005 .

[111]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[112]  N G Broderick Optical snakes and ladders: dispersion and nonlinearity in microcoil resonators. , 2008, Optics express.

[113]  Takahiro Matsumoto,et al.  Characterizations of Simultaneously Fabricated Silicon and Silicon Monoxide Nanowires : Semiconductors , 2001 .

[114]  T. Birks,et al.  Shape of fiber tapers , 1992 .

[115]  Richard J. Black,et al.  Tapered single-mode fibres and devices. I. Adiabaticity criteria , 1991 .

[116]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[117]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[118]  E. Lyons,et al.  Confinement and bistability in a tapered hemispherically lensed optical fiber trap , 1995 .

[119]  Peter Horak,et al.  Optical microfiber coil resonator refractometric sensor. , 2007, Optics express.

[120]  David J. Richardson,et al.  Supercontinuum generation in tapered bismuth silicate fibres , 2005 .

[121]  Wei Qian,et al.  Amorphous silica nanowires: Intensive blue light emitters , 1998 .

[122]  A. Ashkin,et al.  Optical trapping and manipulation of neutral particles using lasers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[123]  Limin Tong,et al.  Self-modulated taper drawing of silica nanowires , 2005 .

[124]  D. Appell Wired for success , 2002 .

[125]  Jacques Bures,et al.  Power density of the evanescent field in the vicinity of a tapered fiber , 1999 .

[126]  Xuefeng Gao,et al.  Electrochemical synthesis of ordered alumina nanowire arrays , 2003 .

[127]  L.J. Guo,et al.  Polymer microring resonators for biochemical sensing applications , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[128]  S. Arnold,et al.  Shift of whispering-gallery modes in microspheres by protein adsorption. , 2003, Optics letters.

[129]  V. I. Balykin,et al.  Atom trapping and guiding with a subwavelength-diameter optical fiber , 2004 .

[130]  A. Hale,et al.  Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer. , 2004, Optics express.

[131]  Benjamin J Eggleton,et al.  Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. , 2008, Optics letters.

[132]  G. Brambilla,et al.  Compound-glass optical nanowires , 2005 .

[133]  Limin Tong,et al.  Modeling of silica nanowires for optical sensing. , 2005, Optics express.

[134]  E.-J. Bachus,et al.  Fibre-optic micro-ring-resonator with 2 mm diameter , 1989 .

[135]  Nadeem Hasan Rizvi,et al.  Characterization of the effects of different lasers on the tensile strength of fibers during laser writing of fiber Bragg gratings , 2003, SPIE OPTO-Ireland.

[136]  Peidong Yang,et al.  Germanium Nanowire Growth via Simple Vapor Transport , 2000 .

[137]  Limin Tong,et al.  Observation of a nonlinear microfiber resonator. , 2008, Optics letters.

[138]  James S. Wilkinson,et al.  Optical propulsion of microspheres along a channel waveguide produced by Cs+ ion-exchange in glass , 2004 .

[139]  Roel Baets,et al.  Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor: Reply. , 2007, Optics express.

[140]  Limin Tong,et al.  Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film. , 2008, Optics express.

[141]  Limin Tong,et al.  Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. , 2004, Optics express.

[142]  M. Sumetsky,et al.  Optical microfiber loop resonator , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[143]  Takuo Tanaka,et al.  Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide , 2000 .

[144]  A. Govindaraj,et al.  Oxide nanotubes prepared using carbon nanotubes as templates , 1997 .