Distributed aggregation for modular robots in the pivoting cube model

We present a distributed control strategy for the aggregation of multiple modular robots into one connected structure optimized for use with 3D modular pivoting cube robots such as the 3D M-Blocks [1]. We use the intensity from a light source as input to a decentralized control algorithm that drives the robots together. We describe the algorithm, give provable guarantees on convergence, and discuss experiments carried out in simulation and with a hardware platform of ten 3D M-Blocks modules. In this paper we contribute provably correct algorithms for the aggregation of generic modular robots; we show how these algorithms can be applied on real hardware by evaluating them on the 3D M-Blocks platform.

[1]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[2]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[3]  Zack J. Butler,et al.  Reconfiguration planning for heterogeneous self-reconfiguring robots , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[4]  E. Stein,et al.  Real Analysis: Measure Theory, Integration, and Hilbert Spaces , 2005 .

[5]  M. A. Dahleh,et al.  Constraints on locational optimization problems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[6]  Daniela Rus,et al.  Reconfiguration planning for pivoting cube modular robots , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[7]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[8]  Yoshio Kawauchi,et al.  Structure decision method for self organising robots based on cell structures-CEBOT , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[9]  Wenguo Liu,et al.  Distributed Autonomous Morphogenesis in a Self-Assembling Robotic System , 2012, Morphogenetic Engineering, Toward Programmable Complex Systems.

[10]  N. Benbernou Geometric algorithms for reconfigurable structures , 2011 .

[11]  J. Jewkes,et al.  Theory of Location of Industries. , 1933 .

[12]  Vijay Kumar,et al.  STOCHASTIC CONTROL FOR SELF-ASSEMBLY OF XBOTS , 2008 .

[13]  Hod Lipson,et al.  Robotics: Self-reproducing machines , 2005, Nature.

[14]  Daniela Rus,et al.  Making self-disassembling objects with multiple components in the Robot Pebbles system , 2011, 2011 IEEE International Conference on Robotics and Automation.

[15]  Zvi Drezner Dynamic facility location: The progressive p-median problem , 1995 .

[16]  George M. Whitesides,et al.  Beyond molecules: Self-assembly of mesoscopic and macroscopic components , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[18]  Daniela Rus,et al.  M-blocks: Momentum-driven, magnetic modular robots , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  Toshio Fukuda,et al.  Dynamically reconfigurable robotic system , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[20]  Mac Schwager,et al.  Distributed Coverage Control with Sensory Feedback for Networked Robots , 2006, Robotics: Science and Systems.

[21]  Ali Shokri,et al.  A meta-module approach for cluster flow locomotion of modular robots , 2015, 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM).

[22]  Mac Schwager,et al.  Decentralized, Adaptive Coverage Control for Networked Robots , 2009, Int. J. Robotics Res..

[23]  Swarun Kumar,et al.  Guaranteeing spoof-resilient multi-robot networks , 2015, Autonomous Robots.

[24]  Toshio Fukuda,et al.  Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[25]  Jonas Neubert,et al.  Self-Soldering Connectors for Modular Robots , 2014, IEEE Transactions on Robotics.

[26]  L. Penrose,et al.  A Self-reproducing Analogue , 1957, Nature.

[27]  Radhika Nagpal,et al.  Programmable self-assembly in a thousand-robot swarm , 2014, Science.

[28]  Paul Levi,et al.  Reconfigurable swarm robots produce self-assembling and self-repairing organisms , 2014, Robotics Auton. Syst..

[29]  Bernhard Sendhoff,et al.  Cross-Ball: A new morphogenetic self-reconfigurable modular robot , 2011, 2011 IEEE International Conference on Robotics and Automation.

[30]  Radhika Nagpal,et al.  Kilobot: A low cost scalable robot system for collective behaviors , 2012, 2012 IEEE International Conference on Robotics and Automation.

[31]  Byoung Kwon An Em-cube: cube-shaped, self-reconfigurable robots sliding on structure surfaces , 2008, 2008 IEEE International Conference on Robotics and Automation.

[32]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[33]  Hitoshi Kimura,et al.  Reconfigurable group robots adaptively transforming a mechanical structure - numerical expression of criteria for structural transformation and automatic motion planning method - , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Marsette Vona,et al.  Crystalline Robots: Self-Reconfiguration with Compressible Unit Modules , 2001, Auton. Robots.

[35]  Daniela Rus,et al.  Robot pebbles: One centimeter modules for programmable matter through self-disassembly , 2010, 2010 IEEE International Conference on Robotics and Automation.

[36]  Wolfram Burgard,et al.  Optimizing schedules for prioritized path planning of multi-robot systems , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[37]  Erik D. Demaine,et al.  Linear Reconfiguration of Cube-Style Modular Robots , 2007, ISAAC.

[38]  Daniela Rus,et al.  3D M-Blocks: Self-reconfiguring robots capable of locomotion via pivoting in three dimensions , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[39]  Vijay Kumar,et al.  Sensing and coverage for a network of heterogeneous robots , 2008, 2008 47th IEEE Conference on Decision and Control.

[40]  Mark Yim,et al.  Towards robotic self-reassembly after explosion , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Magnus Egerstedt,et al.  Complete Heterogeneous Self-Reconfiguration: Deadlock Avoidance Using Hole-Free Assemblies , 2013 .

[42]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[43]  Marsette Vona,et al.  Self-reconfiguration planning with compressible unit modules , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).