All-dielectric phase-change reconfigurable metasurface

We harness non-volatile, amorphous-crystalline transitions in the chalcogenide phase-change medium germanium antimony telluride (GST) to realize optically-switchable, all-dielectric metamaterials. Nanostructured, subwavelength-thickness films of GST present high-quality resonances that are spectrally shifted by laser-induced structural transitions, providing reflectivity and transmission switching contrast ratios of up to 5:1 (7 dB) at visible/near-infrared wavelengths selected by design.

[1]  R. Ahuja,et al.  Ab initio study of the structure and chemical bonding of stable Ge(3)Sb(2)Te(6). , 2010, Physical chemistry chemical physics : PCCP.

[2]  Abdelaziz Boulesbaa,et al.  Nonlinear Fano-Resonant Dielectric Metasurfaces. , 2015, Nano letters.

[3]  N. Zheludev,et al.  Metamaterial electro-optic switch of nanoscale thickness , 2010 .

[4]  M. Brongersma,et al.  Creating semiconductor metafilms with designer absorption spectra , 2015, Nature Communications.

[6]  Thomas Taubner,et al.  Using low-loss phase-change materials for mid-infrared antenna resonance tuning. , 2013, Nano letters.

[7]  Peter Nordlander,et al.  Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device , 2013, Nature Communications.

[8]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[9]  N. Zheludev,et al.  Phase-change chalcogenide glass metamaterial , 2009, 0912.4288.

[10]  Behrad Gholipour,et al.  An All‐Optical, Non‐volatile, Bidirectional, Phase‐Change Meta‐Switch , 2013, Advanced materials.

[11]  Behrad Gholipour,et al.  Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. , 2012, Nature materials.

[12]  Nikolay I. Zheludev,et al.  Nano-optomechanical nonlinear dielectric metamaterials , 2015, 1508.00995.

[13]  Nikolay I. Zheludev,et al.  Optically switchable photonic metasurfaces , 2015 .

[14]  Byung-Gyu Chae,et al.  Memory Metamaterials , 2009, Science.

[15]  Philippe Lalanne,et al.  High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms , 1998 .

[16]  J. Valentine,et al.  Realization of an all-dielectric zero-index optical metamaterial , 2013, Nature Photonics.

[17]  Boyoung Kang,et al.  Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure. , 2010, Optics express.

[18]  U. Chettiar,et al.  Loss-free and active optical negative-index metamaterials , 2010, Nature.

[19]  Igal Brener,et al.  Observation of Fano resonances in all-dielectric nanoparticle oligomers. , 2013, Small.

[20]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.

[21]  Richard F. Haglund,et al.  Optically-Triggered Nanoscale Memory Effect in a Hybrid Plasmonic-Phase Changing Nanostructure , 2015 .

[22]  Igal Brener,et al.  Active tuning of all-dielectric metasurfaces. , 2015, ACS nano.

[23]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[24]  H. Atwater,et al.  Frequency tunable near-infrared metamaterials based on VO2 phase transition. , 2009, Optics express.

[25]  M. Wuttig,et al.  A Switchable Mid‐Infrared Plasmonic Perfect Absorber with Multispectral Thermal Imaging Capability , 2015, Advanced materials.

[26]  C. Wright,et al.  Arithmetic and Biologically-Inspired Computing Using Phase-Change Materials , 2011, Advanced materials.

[27]  P Jost,et al.  Disorder-induced localization in crystalline phase-change materials. , 2011, Nature materials.

[28]  Duk-Yong Choi,et al.  Ultrafast All-Optical Switching with Magnetic Resonances in Nonlinear Dielectric Nanostructures. , 2015, Nano letters.

[29]  N I Zheludev,et al.  Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell. , 2013, Optics express.

[30]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[31]  J. Joannopoulos,et al.  Temporal coupled-mode theory for the Fano resonance in optical resonators. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  Nikolay I. Zheludev,et al.  1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage , 2014 .

[33]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[34]  D. Ceglia,et al.  All-optical switching at the Fano resonances in subwavelength gratings with very narrow slits. , 2011, Optics letters.

[35]  B. Ooi,et al.  Electron irradiation induced reduction of the permittivity in chalcogenide glass (As2S3) thin film , 2012, 1208.4542.

[36]  N. Zheludev,et al.  Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. , 2013, Optics express.

[37]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[38]  H. Giessen,et al.  Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. , 2003, Physical review letters.