Solution of Maxwell's equations

Abstract A numerical approach for the solution of Maxwell's equations is presented. Based on a finite difference Yee lattice the method transforms each of the four Maxwell equations into an equivalent matrix expression that can be subsequently treated by matrix mathematics and suitable numerical methods for solving matrix problems. The algorithm, although derived from integral equations, can be considered to be a special case of finite difference formalisms. A large variety of two- and three-dimensional field problems can be solved by computer programs based on this approach: electrostatics and magnetostatics, low-frequency eddy currents in solid and laminated iron cores, high-frequency modes in resonators, waves on dielectric or metallic waveguides, transient fields of antennas and waveguide transitions, transient fields of free-moving bunches of charged particles etc.