Electron-Driven Molecular Processes Induced in Biological Systems by Electromagnetic and Other Ionizing Sources

Abstract We describe, and analyse in some detail, a selection of the most recent theoretical and computational models which attempt to explain, at the molecular level, the dynamics of metastable negative ion formation from biological molecules in the gas-phase. Such Transient Negative Ions (TNIs) are related to the nanoscopic nuclear dynamics presiding over the occurrence of irreversible damage in the biosystems through the many possible pathways leading to dissociative attachment decay of the initial TNI. We will review the theoretical approach we adopted to study electron–molecule collision as applied to systems of biological interest. The connection between the spatial symmetry of the metastable anion and its role during the dissociative electron attachment event is also discussed and analysed through several examples.

[1]  R. Lucchese,et al.  ONE-PARTICLE RESONANCES IN LOW-ENERGY ELECTRON SCATTERING FROM C60 , 1999 .

[2]  F A Gianturco,et al.  H- desorption from uracil via metastable electron capture. , 2004, Physical review letters.

[3]  T. Märk,et al.  Inelastic electron interaction (attachment/ionization) with deoxyribose. , 2004, The Journal of chemical physics.

[4]  N. Sanna,et al.  The separable representation of exchange in electron scattering from polyatomic targets , 2000 .

[5]  E. Illenberger,et al.  Dissociative electron attachment to gas-phase 5-bromouracil , 2000 .

[6]  M. Lepage,et al.  LOW-ENERGY ELECTRON DAMAGE TO CONDENSED-PHASE DEOXYRIBOSE ANALOGUES INVESTIGATED BY ELECTRON STIMULATED DESORPTION OF H- AND ELECTRON ENERGY LOSS SPEC TROSCOPY , 1999 .

[7]  U. Kaldor,et al.  Ab initio electron-molecule scattering theory including polarisation: elastic scattering and rotational excitation of H2 , 1978 .

[8]  N. S. Ham,et al.  He(I) and He(II) photoelectron spectra of glycine and related molecules , 1983 .

[9]  G. Gallup,et al.  Bond breaking and temporary anion states in uracil and halouracils: implications for the DNA bases. , 2004, Physical review letters.

[10]  R. Lucchese,et al.  Resonant capture of low-energy electrons by gas-phase glycine: A quantum dynamics calculation , 2004 .

[11]  Robert R. Lucchese,et al.  On the scattering of low‐energy electrons by sulphur hexafluoride , 1995 .

[12]  Colin David Hunter Chisholm,et al.  Group theoretical techniques in quantum chemistry , 1976 .

[13]  Piotr Skurski,et al.  Theoretical Study of Damage to DNA by 0.2−1.5 eV Electrons Attached to Cytosine† , 2004 .

[14]  Mark S. Gordon,et al.  The conformational potential energy surface of glycine : a theoretical study , 1991 .

[15]  D. Kobe,et al.  Gauge invariance in heavy-ion collisions , 1983 .

[16]  F. Faisal Electron-molecule interactions. I. Single-centre wave functions and potentials , 1970 .

[17]  M. Aymar,et al.  Multichannel Rydberg spectroscopy of complex atoms , 1996 .

[18]  H. Abdoul-Carime,et al.  Alteration of Protein Structure Induced by Low-Energy (<18 eV) Electrons. I. The Peptide and Disulfide Bridges , 2002, Radiation research.

[19]  J. Lett,et al.  Advances in Radiation Biology , 1976 .

[20]  Stephan Denifl,et al.  Bond- and site-selective loss of H atoms from nucleobases by very-low-energy electrons (<3 eV). , 2005, Angewandte Chemie.

[21]  F. Gianturco,et al.  Exact-exchange treatment in electron-polyatomic molecule collisions in a computationally optimized iterative scheme , 1991 .

[22]  Uwe V. Riss,et al.  Calculation of resonance energies and widths using the complex absorbing potential method , 1993 .

[23]  E. Illenberger,et al.  Formation of anion fragments from gas-phase glycine by low energy (0-15 eV) electron impact , 2002 .

[24]  L. Sanche,et al.  Nanoscopic aspects of radiobiological damage: Fragmentation induced by secondary low-energy electrons. , 2002, Mass spectrometry reviews.

[25]  McKoy,et al.  Low-energy electron scattering by silane (SiH4). , 1990, Physical review. A, Atomic, molecular, and optical physics.

[26]  Steen Steenken,et al.  Purine bases, nucleosides, and nucleotides: aqueous solution redox chemistry and transformation reactions of their radical cations and e- and OH adducts , 1989 .

[27]  D. Hunting,et al.  Dissociative electron attachment to DNA. , 2003, Physical review letters.

[28]  M. Huels,et al.  Halogen anion formation in 5-halouracil films: X rays compared to subionization electrons. , 1999, Radiation research.

[29]  A. Gräslund,et al.  Free radicals in irradiated oriented DNA fibers: results from B-form DNA and from deuterated DNA samples. , 1989, Free radical research communications.

[30]  H. Ehrhardt,et al.  Electron collisions with molecules, clusters, and surfaces , 1994 .

[31]  B. Hitt,et al.  Temporary anion states of selected amino acids , 2001 .

[32]  Merril Eisenbud,et al.  Environmental Radioactivity - From Natural, Industrial, and Military Sources, Fourth Edition , 1987 .

[33]  A. F. Fuciarelli,et al.  Radiation damage in DNA : structure/function relationships at early times , 1996 .

[34]  M. Sevilla,et al.  Ab initio molecular orbital calculations of DNA bases and their radical ions in various protonation states: evidence for proton transfer in GC base pair radical anions , 1992 .

[35]  J. Nuttall CONVERGENCE OF PADE APPROXIMANTS FOR THE BETHE--SALPETER AMPLITUDE. , 1967 .

[36]  E. Illenberger,et al.  Resonant dissociation of DNA bases by subionization electrons , 1998 .

[37]  U. Fano Unified treatment of collisions , 1981 .

[38]  Howard S. Taylor,et al.  Stabilization Method of Calculating Resonance Energies: Model Problem , 1970 .

[39]  Piotr Skurski,et al.  Mechanism for Damage to DNA by Low-Energy Electrons † , 2002 .

[40]  T. Märk,et al.  Electron attachment to gas-phase uracil. , 2004, The Journal of chemical physics.

[41]  R. Santra,et al.  Complex absorbing potentials in the framework of electron propagator theory. I. General formalism , 2002 .

[42]  D. W. Norcross,et al.  Parameter-free model of the correlation-polarization potential for electron-molecule collisions , 1984 .

[43]  G. Gallup,et al.  ELECTRON ATTACHMENT ENERGIES OF THE DNA BASES , 1998 .

[44]  M. Sevilla,et al.  Ab initio molecular orbital calculations on DNA base pair radical ions: effect of base pairing on proton-transfer energies, electron affinities, and ionization potentials , 1992 .

[45]  M. Tinkham Group Theory and Quantum Mechanics , 1964 .

[46]  T. Märk,et al.  HIGH-RESOLUTION ELECTRON IONIZATION STUDY OF CO, (CO)2 AND (CO)3 : APPEARANCE ENERGIES AND BOND DISSOCIATION ENERGIES , 1998 .

[47]  N. Chandra,et al.  Electron-molecule interactions. III. A pseudo-potential method for e--N2 scattering , 1972 .

[48]  L. Collins,et al.  Exchange in low-energy electron-molecule scattering: Orthogonalization and free-electron-gas approximations for collisions with polar and nonpolar molecules , 1981 .

[49]  C. Joachain,et al.  Quantum Collision Theory , 1984 .

[50]  B. Marinković,et al.  Elastic scattering of electrons from tetrahydrofuran molecule , 2005 .

[51]  E. Illenberger,et al.  Formation of negative ions from gas phase halo-uracils by low-energy (0–18 eV) electron impact , 2003 .

[52]  J. Song,et al.  Simultaneous observation of dipole-bound and valence electron states in pyridine tetramer anion , 1998 .

[53]  Lu J. Sham,et al.  ONE-PARTICLE PROPERTIES OF AN INHOMOGENEOUS INTERACTING ELECTRON GAS. , 1966 .

[54]  E. Illenberger,et al.  Sensitizing DNA to secondary electron damage: resonant formation of oxidative radicals from 5-halouracils. , 2001, Journal of the American Chemical Society.

[55]  E. Illenberger,et al.  Conversion of amino-acids by electrons at subexcitation energies , 2004 .

[56]  Gianturco,et al.  Low-energy structure in electron-silane scattering. , 1987, Physical review. A, General physics.

[57]  F. Gianturco,et al.  Computational methods for electron-molecule collisions , 1995 .

[58]  S. Blanksby,et al.  Characterization of [M–H] cations, radicals and anions of glycine in the gas phase: a combined experimental and ab initio study , 1999 .

[59]  S. Meloni,et al.  LOW-ENERGY ELECTRON SCATTERING FROM THE WATER MOLECULE : ANGULAR DISTRIBUTIONS AND ROTATIONAL EXCITATION , 1998 .

[60]  K. Smith Aging, Carcinogenesis, and Radiation Biology , 1976, Springer US.

[61]  A. Jain,et al.  CORRIGENDUM: Rotational excitation of CH4 and H2O by slow electron impact , 1983 .

[62]  H. Abdoul-Carime,et al.  Low-Energy (5–40 eV) Electron-Stimulated Desorption of Anions from Physisorbed DNA Bases , 2001, Radiation research.

[63]  T. Sommerfeld Coupling between dipole-bound and valence states: the nitromethane anion , 2002 .

[64]  H. Abdoul-Carime,et al.  Electron attachment to isolated nucleic acid bases , 1996 .

[65]  Piotr Skurski,et al.  Damage to Model DNA Fragments by 0.25−1.0 eV Electrons Attached to a Thymine π* Orbital , 2004 .

[66]  T. Märk,et al.  Electron attachment to uracil: effective destruction at subexcitation energies. , 2003, Physical review letters.

[67]  Pierre Cloutier,et al.  Electron stimulated desorption of H− from thin films of thymine and uracil , 2001 .

[68]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[69]  J. Nilles,et al.  Barrier-free proton transfer in anionic complex of thymine with glycine , 2004 .

[70]  T. Rescigno,et al.  Separable approximation for exchange interactions in electron-molecule scattering: Numerical stabilization procedures , 1982 .

[71]  F. A. Gianturco,et al.  Correlation forces in electron scattering from atoms and molecules : a density functional approach , 1992 .

[72]  T. Rescigno,et al.  Separable approximation for exchange interactions in electron-molecule scattering , 1981 .

[73]  W. Bernhard Sites of electron trapping in DNA as determined by ESR of one-electron-reduced oligonucleotides , 1989 .

[74]  J. Simons,et al.  Effects of base π-stacking on damage to DNA by low-energy electrons , 2004 .

[75]  F. Gianturco,et al.  Correlation forces in electron-scattering processes via density-functional theory: Electron collisions with closed-shell atoms. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[76]  J. Jay-Gerin,et al.  Electron stimulated desorption of H− from thin films of 5-halouracils , 2003 .

[77]  Shunsuke Hara,et al.  The Scattering of Slow Electrons by Hydrogen Molecules , 1967 .

[78]  A. Laubereau,et al.  Novel precursors of solvated electrons in water: evidence for a charge transfer process. , 2000, Physical review letters.

[79]  N. F. Lane The theory of electron-molecule collisions , 1980 .

[80]  W. R. Garrett Reexamination of Scattering by a Pair of Fixed Dipolar Charges , 1971 .

[81]  R. Santra,et al.  Complex absorbing potentials in the framework of electron propagator theory. II. Application to temporary anions , 2003 .

[82]  T. Sommerfeld Intramolecular Electron Transfer from Dipole-Bound to Valence Orbitals: Uracil and 5-Chlorouracil , 2004 .

[83]  Pierre Cloutier,et al.  DNA strand breaks induced by 0-4 eV electrons: the role of shape resonances. , 2004, Physical review letters.

[84]  T. Märk,et al.  Dissociative electron attachment to gas phase alanine , 2005 .

[85]  D. Hunting,et al.  Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. , 2000, Science.

[86]  F. Gianturco,et al.  Local approximations of exchange interaction in electron-molecule collisions: the methane molecule , 1987 .

[87]  E. Illenberger,et al.  Site-specific dissociation of DNA bases by slow electrons at early stages of irradiation. , 2004, Physical review letters.

[88]  R. Lucchese,et al.  Modelling electron-induced processes in “condensed” formic acid , 2005 .

[89]  M. Varma,et al.  Physical and Chemical Mechanisms in Molecular Radiation Biology , 2012, Basic Life Sciences.

[90]  B. Schneider Pseudostates and low-energy electron-molecule collisions: applications to H2 and N2 , 1977 .

[91]  K. Bowen,et al.  The dipole bound-to-covalent anion transformation in uracil , 1998 .

[92]  T. Sommerfeld Dipole-bound states as doorways in (dissociative) electron attachment , 2005 .

[93]  S. Salvini,et al.  Exchange approximations in the scattering of slow electrons by polyatomic molecules , 1981 .

[94]  N. Chandra,et al.  Electron-molecule interactions. IV. Scattering by polyatomic molecules , 1972 .

[95]  J. Mitchell,et al.  Polarized pseudo-states for low energy electron-atom scattering , 1974 .

[96]  T. Orlando,et al.  Dissociative electron attachment in nanoscale ice films: Temperature and morphology effects , 1997 .

[97]  T. Märk,et al.  Dissociative ionization of the nucleosides thymidine and uridine by electron impact , 2005 .

[98]  T. Märk,et al.  Dissociative electron attachment to gas-phase glycine , 2003, Analytical and bioanalytical chemistry.

[99]  Maciej Gutowski,et al.  Dipole-Bound Anions of Glycine Based on the Zwitterion and Neutral Structures , 2000 .

[100]  Lorenz S. Cederbaum,et al.  New approach to the one-particle Green's function for finite Fermi systems , 1983 .

[101]  R. Lucchese,et al.  Radiation damage of biosystems mediated by secondary electrons: resonant precursors for uracil molecules. , 2004, The Journal of chemical physics.

[102]  J. Simons,et al.  A theoretical model for indirect dissociative electron attachment. , 2005, The journal of physical chemistry. A.

[104]  E. Illenberger,et al.  Decomposition of purine nucleobases by very low energy electrons , 2005 .

[105]  T. Märk,et al.  Isotope effects in the electron impact ionization of H2/D2, H2O/D2O, and C6H6/C6D6 near threshold , 2002 .

[106]  T. Märk,et al.  Positive and negative ion formation via slow electron collisions with 5-bromouridine , 2005 .

[107]  T. Stoecklin,et al.  Electron scattering from acetylene: elastic integral and differential cross sections at low energies , 1994 .

[108]  M. Sevilla,et al.  Relative abundance and reactivity of primary ion radicals in .gamma.-irradiated DNA at low temperatures. 2. Single- vs double-stranded DNA , 1992 .

[109]  T. Märk,et al.  Bond- and site-selective loss of H- from pyrimidine bases. , 2005, Physical review letters.

[110]  P. Rowntree,et al.  Electron stimulated desorption via dissociative attachment in amorphous H2O , 1991 .

[111]  T. Märk,et al.  Electron Attachment to the Gas-Phase DNA Bases Cytosine and Thymine , 2004 .

[112]  R. Suenram,et al.  Theory versus experiment: the case of glycine , 1980 .

[113]  L. Sanche,et al.  Diffraction in resonant electron scattering from helical macromolecules: A - and B -type DNA , 2004 .

[114]  R. Abouaf,et al.  Negative ions in thymine and 5-bromouracil produced by low energy electrons , 2003 .

[115]  Nico Sanna Vector spherical harmonics: Concepts and applications to the single centre expansion method , 2000 .

[116]  R. Abouaf,et al.  Structures in dissociative electron attachment cross-sections in thymine, uracil and halouracils , 2005 .

[117]  Nico Sanna,et al.  SCELib: A parallel computational library of molecular properties in the single center approach ✩ , 2000 .

[118]  N. Mason,et al.  Sensitization of 5-bromouridine by slow electrons , 2004 .

[119]  Neal F. Lane,et al.  Nonadjustable exchange-correlation model for electron scattering from closed-shell atoms and molecules , 1983 .

[120]  Low-energy electron scattering from DNA and RNA bases: shape resonances and radiation damage. , 2005, The Journal of chemical physics.

[121]  P. Burke,et al.  Electron-molecule interactions. II. Scattering by closed-shell diatomic molecules , 1970 .

[122]  D. Hunting,et al.  Cross Sections for Low-Energy (10 – 50 eV) Electron Damage to DNA , 2002, Radiation research.

[123]  L. Sanche,et al.  Low-energy electron diffraction and resonances in DNA and other helical macromolecules. , 2003, Physical review letters.

[124]  T. Märk,et al.  Bond selective dissociative electron attachment to thymine. , 2005, The Journal of chemical physics.

[125]  M. Sevilla,et al.  Relative abundances of primary ion radicals in .gamma.-irradiated DNA: cytosine vs. thymine anions and guanine vs. adenine cations , 1991 .

[126]  A. A. Maradudin,et al.  Ground-State Energy of a High-Density Electron Gas , 1964 .

[127]  R. Christoffersen,et al.  Ab initio calculations on large molecules using molecular fragments. Characterization of the zwitterion of glycine , 1973 .

[128]  R. Lucchese,et al.  Nanoscopic models for radiobiological damage: metastable precursors of dissociative electron attachment to formic acid , 2004 .

[129]  Johan Lorentzon,et al.  Theoretical Study of the Electronic Spectra of Uracil and Thymine , 1995 .

[130]  R. Lucchese,et al.  One-electron resonances in electron scattering from polyatomic molecules , 1996 .

[131]  A. Gräslund,et al.  Free-radical Formation in γ-irradiated Oriented DNA Containing Electron-affinic Radiosensitizers , 1977 .

[132]  Piotr Skurski,et al.  Damage to model DNA fragments from very low-energy (<1 eV) electrons. , 2004, Journal of the American Chemical Society.

[133]  R. Lucchese Effects of interchannel coupling on the photoionization cross sections of carbon dioxide , 1990 .

[134]  Masashi Suzuki The heptad repeat in the largest subunit of RNA polymerase II binds by intercalating into DNA , 1990, Nature.

[135]  L. Sanche,et al.  Low energy electron-driven damage in biomolecules , 2005 .

[136]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[137]  L. Sanche,et al.  Diffraction in resonant electron scattering from helical macromolecules: Effects of the DNA backbone , 2005 .

[138]  J. H. Hendricks,et al.  Dipole bound, nucleic acid base anions studied via negative ion photoelectron spectroscopy , 1996 .

[139]  F. Gianturco,et al.  Electron-methane scattering via a parameter-free model interaction , 1987 .

[140]  W. Hendee,et al.  Health effects of exposure to low-level ionizing radiation. , 1996, Acta radiologica.