PROCESSES OCCURRING IN SHOCK WAVE COMPRESSION OF ROCKS AND MINERALS

Abstract Recent advances in time-resolved shock-wave instrumentation and improved methods for analyzing continuous stress-wave data are providing a clearer picture of the processes of yielding and phase transformation occurring during shock compression of rocks and minerals. The present report reviews the advances in time-resolved shock-wave instrumentation which are currently being used and describes the analysis techniques which have been developed to relate shock-wave profiles to the thermomechanical processes occurring during shock compression. Evidence for complicating features resulting from yielding in silicates and oxides is reviewed and a physical model for phase transitions based on heterogeneous deformation and thermal activation is discussed. New supporting data on the shock compression and relief properties of periclase and calcite are presented and considered in terms of a mechanism of heterogeneous deformation.

[1]  A. Dremin,et al.  Processes Occurring in Solids Under the Action of Powerful Shock Waves , 1968 .

[2]  D. L. Styris,et al.  Electrical resistivity of silver foils under uniaxial shock−wave compression , 1975 .

[3]  Lynn Seaman,et al.  Lagrangian analysis for multiple stress or velocity gages in attenuating waves , 1974 .

[4]  M. J. Klein The structure of explosively shocked MgO crystals , 1965 .

[5]  P. W. Bridgman The high pressure behavior of miscellaneous minerals , 1938 .

[6]  Richard Bellman,et al.  Effects of Surface Tension and Viscosity on Taylor Instability , 1954 .

[7]  L. M. Barker,et al.  Dynamic Response of Aluminum , 1964 .

[8]  L. M. Barker,et al.  Wave Propagation in Nonlinear Viscoelastic Solids , 1974 .

[9]  D. Grady,et al.  Quartz to stishovite: Wave propagation in the mixed phase region , 1974 .

[10]  W. Murri,et al.  Hugoniot and release‐adiabat measurements for selected geologic materials , 1970 .

[11]  R. Graham,et al.  Shock-wave compression of sapphire from 15 to 420 kbar. The effects of large anisotropic compressions , 1971 .

[12]  A. Dremin,et al.  Investigation of shock initiation to detonation in nitromethane , 1965 .

[13]  E. B. Royce,et al.  SHOCK-INDUCED DEMAGNETIZATION OF YIG. , 1968 .

[14]  W. Bassett,et al.  The crystal structure of CaCO3(II), a high‐pressure metastable phase of calcium carbonate , 1975 .

[15]  L. M. Barker,et al.  Shock‐Wave Studies of PMMA, Fused Silica, and Sapphire , 1970 .

[16]  D. E. Grady,et al.  Hugoniot sound velocities and phase transformations in two silicates , 1975 .

[17]  Jerry Wackerle,et al.  Shock‐Wave Compression of Quartz , 1962 .

[18]  A. E. Ringwood,et al.  High-pressure KAlSi3O8, an aluminosilicate with sixfold coordination , 1967 .

[19]  J. H. Price,et al.  Dynamic pressure measurements to 300 kilobars with a resistance transducer , 1964 .

[20]  Thomas J. Ahrens,et al.  Shock compression of feldspars , 1969 .

[21]  J. Kalejs,et al.  Ultrasonic Attenuation in Germanium at Microwave Frequencies , 1970 .

[22]  R. Fowles,et al.  Dynamic compression of quartz , 1967 .

[23]  W. B. Benedick,et al.  Piezoelectric Current from Shock‐Loaded Quartz—A Submicrosecond Stress Gauge , 1965 .

[24]  Pressure dependence of the electrical resistance of shock-compressed CuNiMn 3-12 manganin and CuNiMn 40-1.5 constantan , 1972 .

[25]  M. H. Rice Capacitor Technique for Measuring the Velocity of a Plane Conducting Surface , 1961 .

[26]  R. F. Williams,et al.  Determination of Constitutive Relationships with Multiple Gauges in Nondivergent Waves , 1971 .

[27]  R. D. Jacobson,et al.  Lithium niobate stress gauge for pulsed radiation deposition studies , 1973 .

[28]  D. Grady,et al.  dynamic unloading in shock compressed feldspar , 1976 .

[29]  Bakerian Lecture - Physics above 20,000 kg./cm.2 , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  D. J. Milton,et al.  Stishovite: Synthesis by Shock Wave , 1965, Science.

[31]  R. Graham Shock-wave compression of x-cut quartz as determined by electrical response measurements , 1974 .

[32]  A. K. Singh,et al.  Compression of calcite to 40 KB , 1974 .

[33]  R. F. Tinder,et al.  Effects of Point Defects on Elastic Precursor Decay in LiF , 1972 .

[34]  Stanley Minshall,et al.  Properties of Elastic and Plastic Waves Determined by Pin Contactors and Crystals , 1955 .

[35]  A. R. Mcmillan,et al.  Dynamic Piezoresistive Coefficient of Manganin to 392 kbar , 1969 .

[36]  L. M. Barker,et al.  Laser interferometer for measuring high velocities of any reflecting surface , 1972 .

[37]  T. Bunch Some characteristics of selected minerals from craters , 1968 .

[38]  Dennis E. Grady,et al.  Strain rate dependence in dolomite inferred from impact and static compression studies , 1977 .

[39]  D. E. Grady,et al.  Experimental analysis of spherical wave propagation , 1973 .

[40]  J. Walsh,et al.  EQUATION OF STATE OF METALS FROM SHOCK WAVE MEASUREMENTS , 1955 .

[41]  G. E. Duvall,et al.  Dislocation mechanisms for stress relaxation in shocked LiF , 1975 .

[42]  D. Hayes,et al.  Polymorphic phase transformation rates in shock‐loaded potassium chloride , 1974 .

[43]  T. Ahrens,et al.  Material Strength Effect in the Shock Compression of Alumina , 1968 .

[44]  D. D. Keough,et al.  Piezoresistivity of Manganin , 1964 .

[45]  T. Ahrens High‐Pressure Electrical Behavior and Equation of State of Magnesium Oxide from Shock Wave Measurements , 1966 .

[46]  A. Dremin,et al.  The effect of shock waves on silicon dioxide. I. Quartz , 1974 .

[47]  L. M. Barker,et al.  Interferometer Technique for Measuring the Dynamic Mechanical Properties of Materials , 1965 .

[48]  D. D. Keough,et al.  Variation of the Shock Piezoresistance Coefficient of Manganin as a Function of Deformation , 1970 .

[49]  Richard Fowles,et al.  Plane Stress Wave Propagation in Solids , 1970 .

[50]  E. Teller On the Speed of Reactions at High Pressures , 1962 .

[51]  S. P. Marsh,et al.  Hugoniot equation of state of twelve rocks , 1967 .

[52]  L. M. Barker,et al.  Correction to the velocity‐per‐fringe relationship for the VISAR interferometer , 1974 .

[53]  R. Graham Measurement of Wave Profiles in Shock-Loaded Solids , 1979 .

[54]  H. Spetzler,et al.  Equation of State of Polycrystalline and Single‐Crystal MgO to 8 Kilobars and 800°K , 1970 .

[55]  D. Andrews,et al.  Equation of state of the alpha and epsilon phases of iron , 1973 .

[56]  J. Asay,et al.  Shock‐compression and release behavior near melt states in aluminum , 1975 .

[57]  T. Ahrens,et al.  Optical absorption spectra of ruby and periclase at high shock pressures , 1973 .

[58]  G. E. Duvall,et al.  Stress relaxation behind elastic shock waves in rocks , 1966 .