Схемы рефлексии и алгебры доказуемости в формальной арифметике@@@Reflection principles and provability algebras in formal arithmetic
暂无分享,去创建一个
[1] Saul A. Kripke,et al. Deduction-preserving "Recursive Isomorphisms" between theories , 1967 .
[2] R. Magari,et al. Representation and duality theory for diagonalizable algebras , 1975 .
[3] George Boolos,et al. Reflection principles and iterated consistency assertions , 1979, Journal of Symbolic Logic.
[4] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[5] M. H. Lob,et al. Solution of a Problem of Leon Henkin , 1955, J. Symb. Log..
[6] George Boolos,et al. Omega-consistency and the diamond , 1980 .
[7] J. Paris,et al. Accessible Independence Results for Peano Arithmetic , 1982 .
[8] V. Yu. Shavrukov,et al. Undecidability in diagonalizable algebras , 1997, Journal of Symbolic Logic.
[9] Albert Visser,et al. An Overview of Interpretability Logic , 1997, Advances in Modal Logic.
[10] Solomon Feferman,et al. Transfinite recursive progressions of axiomatic theories , 1962, Journal of Symbolic Logic.
[11] V. Yu. Shavrukov. A Note on the Diagonalizable Algebras of PA and ZF , 1993, Ann. Pure Appl. Log..
[12] Lev D. Beklemishev,et al. Proof-theoretic analysis by iterated reflection , 2003, Arch. Math. Log..
[13] G. Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .
[14] Lev D. Beklemishev,et al. Provability algebras and proof-theoretic ordinals, I , 2001, Ann. Pure Appl. Log..
[15] S. Feferman. Arithmetization of metamathematics in a general setting , 1959 .
[16] Lev D. Beklemishev,et al. Induction Rules, Reflection Principles, and Provably Recursive Functions , 1995, Ann. Pure Appl. Log..
[17] Jeremy Avigad,et al. An Ordinal Analysis of Admissible Set Theory using Recursion on Ordinal Notations , 2002, J. Math. Log..
[18] J. Barkley Rosser,et al. Extensions of some theorems of Gödel and Church , 1936, Journal of Symbolic Logic.
[19] V. Y. Shavrukov. Isomorphisms of diagonalizable algebras , 1996 .
[20] Konstantin N. Ignatiev,et al. On strong provability predicates and the associated modal logics , 1993, Journal of Symbolic Logic.
[21] Michael Rathjen,et al. Recent Advances in Ordinal Analysis: Π1 2 — CA and Related Systems , 1995, Bulletin of Symbolic Logic.
[22] Lev D. Beklemishev. Notes on local reflection principles , 1995 .
[23] Lev D. Beklemishev. Parameter Free Induction and Reflection , 1997, Kurt Gödel Colloquium.
[24] Shavrukov,et al. Subalgebras of Diagonalizable Algebras of Theories Containing Arithmetic , 1993 .
[25] Jeremy Avigad,et al. The model-theoretic ordinal analysis of theories of predicative strength , 1999, Journal of Symbolic Logic.
[26] Lawrence J. Pozsgay. Gödel's Second Theorem for Elementary arithmetic , 1968 .
[27] Lev D. Beklemishev,et al. Parameter Free Induction and Provably Total Computable Functions , 1999, Theor. Comput. Sci..
[28] Ulf R. Schmerl. A Fine Structure Generated by Reflection Formulas over Primitive Recursive Arithmetic , 1979 .
[29] Lev D. Beklemishev,et al. A proof-theoretic analysis of collection , 1998, Arch. Math. Log..
[30] S. Wainer,et al. Provably computable functions and the fast growing hierarchy , 1987 .
[31] Jeremy Avigad,et al. A Model-Theoretic Approach to Ordinal Analysis , 1997, Bulletin of Symbolic Logic.
[32] Hiroakira Ono,et al. Reflection Principles in Fragments of Peano Arithmetic , 1987, Math. Log. Q..
[33] Domenico Zambella. Shavrukov's Theorem on the Subalgebras of Diagonalizable Algebras for Theories Containing I Δ0s + exp , 1994, Notre Dame J. Formal Log..
[34] Lev D. Beklemishev. Iterated Local Reflection Versus Iterated Consistency , 1995, Ann. Pure Appl. Log..
[35] Wilhelm Ackermann,et al. Zur Widerspruchsfreiheit der Zahlentheorie , 1940 .
[36] W. Pohlers,et al. A short course in ordinal analysis , 1993 .
[37] Grigori Mints,et al. Epsilon-Substitution Method for the Ramified Language and $$\Delta _1^1$$-Comprehension Rule , 1999 .
[38] Daniel Leivant,et al. The optimality of induction as an axiomatization of arithmetic , 1983, Journal of Symbolic Logic (JSL).
[39] D.H.J. de Jongh,et al. The logic of the provability , 1998 .
[40] Sergei Tupailo. Epsilon Substitution Method for Delta11-CR: a Constructive Termination Proof , 2003, Log. J. IGPL.
[41] Toshiyasu Arai. Epsilon substitution method for theories of jump hierarchies , 2002, Arch. Math. Log..
[42] C. Smorynski,et al. The finite inseparability of the first-order theory of diagonalisable algebras , 1982 .
[43] Georg Kreisel,et al. A survey of proof theory , 1968, Journal of Symbolic Logic.
[44] C. Parsons. On a Number Theoretic Choice Schema and its Relation to Induction , 1970 .
[45] R. Statman. Bounds for proof-search and speed-up in the predicate calculus , 1978 .
[46] Richard Sommer,et al. Transfinite Induction within Peano Arithmetic , 1995, Ann. Pure Appl. Log..
[47] Rohit Parikh,et al. Existence and feasibility in arithmetic , 1971, Journal of Symbolic Logic.
[48] Charles D. Parsons,et al. On n-quantifier induction , 1972, Journal of Symbolic Logic.
[49] Sergei N. Artëmov,et al. On propositional quantifiers in provability logic , 1993, Notre Dame J. Formal Log..
[50] Franco Montagna,et al. Interpretations of the first-order theory of diagonalizable algebras in peano arithmetic , 1980 .
[51] Jeff B. Paris,et al. On the scheme of induction for bounded arithmetic formulas , 1987, Ann. Pure Appl. Log..
[52] Georg Kreisel,et al. Reflection Principles and Their Use for Establishing the Complexity of Axiomatic Systems , 1968 .
[53] Wilfried Buchholz. Explaining the Gentzen–Takeuti reduction steps: a second-order system , 2001, Arch. Math. Log..
[54] Franco Montagna. On the algebraization of a Feferman's predicate , 1978 .
[55] J. Barkley Rosser,et al. Gödel Theorems for Non-Constructive Logics , 1937, Journal of Symbolic Logic.
[56] Toshiyasu Arai,et al. Epsilon substitution method for ID1(Pi10 or Sigma10) , 2003, Ann. Pure Appl. Log..
[57] R. Solovay. Provability interpretations of modal logic , 1976 .
[58] W. Pohlers. Chapter IV – Subsystems of Set Theory and Second Order Number Theory , 1998 .
[59] Wilfried Buchholz. Explaining Gentzen's Consistency Proof within Infinitary Proof Theory , 1997, Kurt Gödel Colloquium.