Introduction to Compliant Long Dwell Mechanism Designs Using Buckling Beams and Arcs

New classes of compliant long dwell mechanism designs are introduced, formulated, and simulated. These classes of compliant dwell mechanisms incorporate the buckling motion of flexible members. Long dwell motion is obtained throughout the buckling motion of a flexible follower. Flexible buckling members are modeled using polynomial functions fitted to nonlinear inextensible exact elastica theory. The displacement analysis of the mechanisms is done quasi-statically using loop closure theory, static equilibrium of flexible parts represented by polynomial load deflections. One example of each new mechanism and its simulation results are presented.

[1]  H. Nahvi Static and dynamic analysis of compliant mechanisms containing highly flexible members , 1991 .

[2]  A. Saxena Synthesis of Compliant Mechanisms for Path Generation using Genetic Algorithm , 2005 .

[3]  G. K. Ananthasuresh,et al.  A Novel Compliant Mechanism for Converting Reciprocating Translation Into Enclosing Curved Paths , 2004 .

[4]  Robert L. Norton,et al.  Design of machinery : an introduction to the synthesis and analysis of mechanisms and machines , 1999 .

[5]  Charles J. Kim,et al.  An Instant Center Approach Toward the Conceptual Design of Compliant Mechanisms , 2006 .

[6]  H. Su,et al.  A Polynomial Homotopy Formulation of the Inverse Static Analysis of Planar Compliant Mechanisms , 2006 .

[7]  M. S. Evans,et al.  Dynamic modeling of compliant constant-force compression mechanisms , 2003 .

[8]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[9]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[10]  Larry L. Howell,et al.  A generalized loop-closure theory for the analysis and synthesis of compliant mechanisms , 1993 .

[11]  G. K. Ananthasuresh A new design paradigm for micro-electro-mechanical systems and investigations on the compliant mechanisms synthesis. , 1994 .

[12]  C. Y. Wang,et al.  Asymptotic formula for the flexible bar , 1999 .

[13]  J. Casals-Terre,et al.  Dynamic analysis of a snap-action micromechanism , 2004, Proceedings of IEEE Sensors, 2004..

[14]  K. Bathe,et al.  FINITE ELEMENT FORMULATIONS FOR LARGE DEFORMATION DYNAMIC ANALYSIS , 1975 .

[15]  T. E. Shoup,et al.  On the Use of the Undulating Elastica for the Analysis of Flexible Link Mechanisms , 1971 .

[16]  Rajat Saxena,et al.  On Honeycomb Parameterization for Topology Optimization of Compliant Mechanisms , 2003, DAC 2003.

[17]  Cheng-Kuo Sung,et al.  Design of a linear micro-feeding system featuring bistable mechanisms , 2005 .

[18]  Larry L. Howell,et al.  Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints , 2004 .

[19]  Ole Sigmund,et al.  A 99 line topology optimization code written in Matlab , 2001 .

[20]  Sridhar Kota,et al.  Automatic selection of mechanism designs from a three-dimensional design map , 1992 .

[21]  Den Hartog Advanced Strength of Materials , 1952 .

[22]  Ümit Sönmez Introduction to Compliant Long-Dwell Mechanism Synthesis Using Buckling Arc Theory , 2003, DAC 2003.

[23]  Larry L. Howell,et al.  Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model , 2005 .

[24]  N. M. Sevak,et al.  Optimal Synthesis of Flexible Link Mechanisms with Large Static Deflections , 1975 .

[25]  J. Lang,et al.  A curved-beam bistable mechanism , 2004, Journal of Microelectromechanical Systems.

[26]  T. Y. Yang,et al.  A simple element for static and dynamic response of beams with material and geometric nonlinearities , 1984 .

[27]  Mary Frecker,et al.  Topological synthesis of compliant mechanisms using multi-criteria optimization , 1997 .

[28]  Sridhar Kota Compliant systems using monolithic mechanisms , 2001 .

[29]  Mary Frecker,et al.  Dynamic Topology Optimization of Compliant Mechanisms and Piezoceramic Actuators , 2004 .

[30]  Sridhar Kota,et al.  MINN-DWELL - COMPUTER AIDED DESIGN AND ANALYSIS OF LINKAGE-TYPE DWELL MECHANISMS. , 1987 .

[31]  John R Booker,et al.  Finite element analysis of primary and secondary consolidation , 1977 .

[32]  Larry L. Howell,et al.  Compliant Floating-Opposing-Arm (FOA) Centrifugal Clutch , 2004 .

[33]  Terry Emerson Shoup An analytical investigation of the large deflections of flexible beam springs , 1969 .

[34]  J. F. Wilson,et al.  The mechanics and positioning of highly flexible manipulator limbs , 1989 .

[35]  Brett A. Coulter,et al.  Numerical analysis of a generalized plane ‘elastica’ with non‐linear material behaviour , 1988 .

[36]  John Anthony Hrones,et al.  Analysis of the four-bar linkage , 1951 .

[37]  G. K. Ananthasuresh,et al.  Micromechanical Devices With Embedded Electro-Thermal-Compliant Actuation , 1999, Micro-Electro-Mechanical Systems (MEMS).

[38]  On finite deflection of an extensible circular ring segment , 1966 .

[39]  Larry L. Howell,et al.  Prediction of the First Modal Frequency of Compliant Mechanisms Using the Pseudo-Rigid-Body Model , 1999 .