SwissDock, a protein-small molecule docking web service based on EADock DSS

Most life science processes involve, at the atomic scale, recognition between two molecules. The prediction of such interactions at the molecular level, by so-called docking software, is a non-trivial task. Docking programs have a wide range of applications ranging from protein engineering to drug design. This article presents SwissDock, a web server dedicated to the docking of small molecules on target proteins. It is based on the EADock DSS engine, combined with setup scripts for curating common problems and for preparing both the target protein and the ligand input files. An efficient Ajax/HTML interface was designed and implemented so that scientists can easily submit dockings and retrieve the predicted complexes. For automated docking tasks, a programmatic SOAP interface has been set up and template programs can be downloaded in Perl, Python and PHP. The web site also provides an access to a database of manually curated complexes, based on the Ligand Protein Database. A wiki and a forum are available to the community to promote interactions between users. The SwissDock web site is available online at http://www.swissdock.ch. We believe it constitutes a step toward generalizing the use of docking tools beyond the traditional molecular modeling community.

[1]  Thomas A. Halgren,et al.  Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular. interactions , 1996, J. Comput. Chem..

[2]  N. Mills ChemDraw Ultra 10.0 CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 02140. www.cambridgesoft.com. Commercial Price: $1910 for download, $2150 for CD-ROM; Academic Price: $710 for download, $800 for CD-ROM. , 2006 .

[3]  Aurélien Grosdidier,et al.  Combined Simulation and Mutagenesis Analyses Reveal the Involvement of Key Residues for Peroxisome Proliferator-activated Receptorα Helix 12 Dynamic Behavior* , 2007, Journal of Biological Chemistry.

[4]  Aurélien Grosdidier,et al.  Blind docking of 260 protein–ligand complexes with EADock 2.0 , 2009, J. Comput. Chem..

[5]  Thomas A. Halgren,et al.  Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules , 1996, J. Comput. Chem..

[6]  Ellen R. Laird,et al.  Chppter 30. Recent advances in virtual ligand screening , 2003 .

[7]  Amedeo Caflisch,et al.  Efficient evaluation of binding free energy using continuum electrostatics solvation. , 2004, Journal of medicinal chemistry.

[8]  A. Caflisch,et al.  In Silico Discovery of β-Secretase Inhibitors , 2006 .

[9]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[10]  Thomas A. Halgren,et al.  Merck molecular force field. IV. conformational energies and geometries for MMFF94 , 1996 .

[11]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[12]  Aurélien Grosdidier,et al.  Rational design of indoleamine 2,3-dioxygenase inhibitors. , 2010, Journal of medicinal chemistry.

[13]  Thomas A. Halgren Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94 , 1996, J. Comput. Chem..

[14]  M Laurin Council,et al.  Oncogenic mutations in GNAQ occur early in uveal melanoma. , 2008, Investigative ophthalmology & visual science.

[15]  A. Caflisch,et al.  Discovery of cell-permeable non-peptide inhibitors of beta-secretase by high-throughput docking and continuum electrostatics calculations. , 2005, Journal of medicinal chemistry.

[16]  B. Shoichet,et al.  Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. , 2002, Journal of medicinal chemistry.

[17]  Brian K. Shoichet,et al.  ZINC - A Free Database of Commercially Available Compounds for Virtual Screening , 2005, J. Chem. Inf. Model..

[18]  D. Vanderwall,et al.  Inhibitors of dihydrodipicolinate reductase, a key enzyme of the diaminopimelate pathway of Mycobacterium tuberculosis. , 2001, Biochimica et biophysica acta.

[19]  D. Kostrewa,et al.  Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. , 2000, Journal of medicinal chemistry.

[20]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[21]  Peter Kolb,et al.  In silico discovery of beta-secretase inhibitors. , 2006, Journal of the American Chemical Society.

[22]  J. Irwin,et al.  Lead discovery using molecular docking. , 2002, Current opinion in chemical biology.

[23]  Thomas A. Halgren,et al.  Merck molecular force field. IV. conformational energies and geometries for MMFF94 , 1996, J. Comput. Chem..

[24]  VINCENT ZOETE,et al.  SwissParam: A fast force field generation tool for small organic molecules , 2011, J. Comput. Chem..

[25]  W. L. Jorgensen The Many Roles of Computation in Drug Discovery , 2004, Science.

[26]  Jian Zhang,et al.  Peptide deformylase is a potential target for anti‐Helicobacter pylori drugs: Reverse docking, enzymatic assay, and X‐ray crystallography validation , 2006, Protein science : a publication of the Protein Society.

[27]  Thomas A. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[28]  Eric A. Althoff,et al.  Kemp elimination catalysts by computational enzyme design , 2008, Nature.

[29]  Egon L. Willighagen,et al.  The Blue Obelisk—Interoperability in Chemical Informatics , 2006, J. Chem. Inf. Model..

[30]  L. Looger,et al.  Computational design of receptor and sensor proteins with novel functions , 2003, Nature.

[31]  Urs Haberthür,et al.  FACTS: Fast analytical continuum treatment of solvation , 2008, J. Comput. Chem..

[32]  Aurélien Grosdidier,et al.  Fast docking using the CHARMM force field with EADock DSS , 2011, J. Comput. Chem..

[33]  William F. DeGrado Computational biology: Biosensor design , 2003, Nature.

[34]  Peter Kolb,et al.  Docking screens: right for the right reasons? , 2009, Current topics in medicinal chemistry.

[35]  C L Brooks,et al.  Ligand-protein database: linking protein-ligand complex structures to binding data. , 2001, Journal of medicinal chemistry.

[36]  Michael M. Mysinger,et al.  Automated Docking Screens: A Feasibility Study , 2009, Journal of medicinal chemistry.

[37]  Gerard J Kleywegt,et al.  Limitations and lessons in the use of X-ray structural information in drug design , 2008, Drug Discovery Today.