Flow-driven spectral chaos (FSC) method for simulating long-time dynamics of arbitrary-order non-linear stochastic dynamical systems

Abstract Uncertainty quantification techniques such as the time-dependent generalized polynomial chaos (TD-gPC) use an adaptive orthogonal basis to better represent the stochastic part of the solution space (aka random function space) in time. However, because the random function space is constructed using tensor products, TD-gPC-based methods are known to suffer from the curse of dimensionality. In this paper, we introduce a new numerical method called the flow-driven spectral chaos (FSC) which overcomes this curse of dimensionality at the random-function-space level. The proposed method is not only computationally more efficient than existing TD-gPC-based methods but is also far more accurate. The FSC method uses the concept of enriched stochastic flow maps to track the evolution of a finite-dimensional random function space efficiently in time. To transfer the probability information from one random function space to another, two approaches are developed and studied herein. In the first approach, the probability information is transferred in the mean-square sense, whereas in the second approach the transfer is done exactly using a new theorem that was developed for this purpose. The FSC method can quantify uncertainties with high fidelity, especially for the long-time response of stochastic dynamical systems governed by ODEs of arbitrary order. Six representative numerical examples, including a nonlinear problem (the Van-der-Pol oscillator), are presented to demonstrate the performance of the FSC method and corroborate the claims of its superior numerical properties. Finally, a parametric, high-dimensional stochastic problem is used to demonstrate that when the FSC method is used in conjunction with Monte Carlo integration, the curse of dimensionality can be overcome altogether.

[1]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[2]  Pierre F. J. Lermusiaux,et al.  Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows , 2013, J. Comput. Phys..

[3]  George E. Karniadakis,et al.  Multi-element probabilistic collocation method in high dimensions , 2010, J. Comput. Phys..

[4]  G. Karniadakis,et al.  Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simulations , 2006 .

[5]  Pierre F. J. Lermusiaux,et al.  Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .

[6]  Wing Kam Liu,et al.  Probabilistic finite elements for nonlinear structural dynamics , 1986 .

[7]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[8]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[9]  Michał Kleiber,et al.  The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation , 1993 .

[10]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[11]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[12]  Roger Ghanem,et al.  Stochastic Finite Elements with Multiple Random Non-Gaussian Properties , 1999 .

[13]  N. Wiener The Homogeneous Chaos , 1938 .

[14]  R. Ghanem,et al.  Polynomial Chaos in Stochastic Finite Elements , 1990 .

[15]  Dirk P. Kroese,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[16]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[17]  N. Wiener,et al.  The Discrete Chaos , 1943 .

[18]  Karl Iagnemma,et al.  A Multi-Element generalized Polynomial Chaos approach to analysis of mobile robot dynamics under uncertainty , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  Max Gunzburger,et al.  A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2014, SIAM/ASA J. Uncertain. Quantification.

[20]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[21]  George E. Karniadakis,et al.  Time-dependent generalized polynomial chaos , 2010, J. Comput. Phys..

[22]  W. Rudin Real and complex analysis , 1968 .

[23]  Kiyosi Itô Multiple Wiener Integral , 1951 .

[24]  K. Ritter,et al.  High dimensional integration of smooth functions over cubes , 1996 .

[25]  J. D. Collins,et al.  The eigenvalue problem for structural systems with statistical properties. , 1969 .

[26]  David R. Kincaid,et al.  Linear Algebra: Theory and Applications , 2010 .

[27]  Nitin Agarwal,et al.  A domain adaptive stochastic collocation approach for analysis of MEMS under uncertainties , 2009, J. Comput. Phys..

[28]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[29]  Rainer Helmig,et al.  A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations , 2011 .

[30]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[31]  Guillaume Bal,et al.  Dynamical Polynomial Chaos Expansions and Long Time Evolution of Differential Equations with Random Forcing , 2016, SIAM/ASA J. Uncertain. Quantification.

[32]  George E. Karniadakis,et al.  Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs , 2006, J. Sci. Comput..

[33]  O. L. Maître,et al.  Uncertainty propagation in CFD using polynomial chaos decomposition , 2006 .

[34]  Fabio Nobile,et al.  Error Analysis of the Dynamically Orthogonal Approximation of Time Dependent Random PDEs , 2015, SIAM J. Sci. Comput..

[35]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[36]  Thomas Y. Hou,et al.  A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: Derivation and algorithms , 2013, J. Comput. Phys..

[37]  Victor Montagud-Camps Turbulence , 2019, Turbulent Heating and Anisotropy in the Solar Wind.

[38]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[39]  George E. Karniadakis,et al.  The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications , 2008, J. Comput. Phys..

[40]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[41]  D. Xiu Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .

[42]  Franz S. Hover,et al.  Uncertainty quantification in simulations of power systems: Multi-element polynomial chaos methods , 2010, Reliab. Eng. Syst. Saf..

[43]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..

[44]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[45]  Vito Volterra,et al.  Leçons sur les équations intégrales et les équations intégro-différentielles , 1913 .

[46]  Pol D. Spanos,et al.  A stochastic Galerkin expansion for nonlinear random vibration analysis , 1993 .

[47]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[48]  N. Zabaras,et al.  Using stochastic analysis to capture unstable equilibrium in natural convection , 2005 .

[49]  T. Sullivan Introduction to Uncertainty Quantification , 2015 .

[50]  Karl Iagnemma,et al.  A polynomial chaos approach to the analysis of vehicle dynamics under uncertainty , 2012 .

[51]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[52]  Masanobu Shinozuka,et al.  Weighted Integral Method. II: Response Variability and Reliability , 1991 .

[53]  Hisanao Ogura,et al.  Orthogonal functionals of the Poisson process , 1972, IEEE Trans. Inf. Theory.

[54]  M. Schetzen,et al.  Nonlinear system modeling based on the Wiener theory , 1981, Proceedings of the IEEE.

[55]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[56]  Minseok Choi,et al.  A convergence study for SPDEs using combined Polynomial Chaos and Dynamically-Orthogonal schemes , 2013, J. Comput. Phys..

[57]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[58]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[59]  George Deodatis,et al.  Weighted Integral Method. I: Stochastic Stiffness Matrix , 1991 .

[60]  Dirk P. Kroese,et al.  Handbook of Monte Carlo Methods , 2011 .

[61]  Masanobu Shinozuka,et al.  Response Variability of Stochastic Finite Element Systems , 1988 .

[62]  Dongbin Xiu,et al.  Minimal multi-element stochastic collocation for uncertainty quantification of discontinuous functions , 2013, J. Comput. Phys..

[63]  Steven L. Brunton,et al.  Long-time uncertainty propagation using generalized polynomial chaos and flow map composition , 2014, J. Comput. Phys..

[64]  David Douglas Engel,et al.  The Multiple Stochastic Integral , 1982 .

[65]  T. Kailath,et al.  Orthogonal functionals of independent-increment processes , 1976, IEEE Trans. Inf. Theory.

[66]  G. Leobacher,et al.  Introduction to Quasi-Monte Carlo Integration and Applications , 2014 .

[67]  H. Najm,et al.  A stochastic projection method for fluid flow II.: random process , 2002 .

[68]  Wing Kam Liu,et al.  Random field finite elements , 1986 .

[69]  Thomas Y. Hou,et al.  A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations , 2013, J. Comput. Phys..

[70]  Masanobu Shinozuka,et al.  Neumann Expansion for Stochastic Finite Element Analysis , 1988 .