暂无分享,去创建一个
[1] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[2] Pierre F. J. Lermusiaux,et al. Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows , 2013, J. Comput. Phys..
[3] George E. Karniadakis,et al. Multi-element probabilistic collocation method in high dimensions , 2010, J. Comput. Phys..
[4] G. Karniadakis,et al. Long-Term Behavior of Polynomial Chaos in Stochastic Flow Simulations , 2006 .
[5] Pierre F. J. Lermusiaux,et al. Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .
[6] Wing Kam Liu,et al. Probabilistic finite elements for nonlinear structural dynamics , 1986 .
[7] O. L. Maître,et al. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .
[8] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[9] Michał Kleiber,et al. The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation , 1993 .
[10] P. Alam,et al. R , 1823, The Herodotus Encyclopedia.
[11] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[12] Roger Ghanem,et al. Stochastic Finite Elements with Multiple Random Non-Gaussian Properties , 1999 .
[13] N. Wiener. The Homogeneous Chaos , 1938 .
[14] R. Ghanem,et al. Polynomial Chaos in Stochastic Finite Elements , 1990 .
[15] Dirk P. Kroese,et al. Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.
[16] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[17] N. Wiener,et al. The Discrete Chaos , 1943 .
[18] Karl Iagnemma,et al. A Multi-Element generalized Polynomial Chaos approach to analysis of mobile robot dynamics under uncertainty , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[19] Max Gunzburger,et al. A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2014, SIAM/ASA J. Uncertain. Quantification.
[20] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[21] George E. Karniadakis,et al. Time-dependent generalized polynomial chaos , 2010, J. Comput. Phys..
[22] W. Rudin. Real and complex analysis , 1968 .
[23] Kiyosi Itô. Multiple Wiener Integral , 1951 .
[24] K. Ritter,et al. High dimensional integration of smooth functions over cubes , 1996 .
[25] J. D. Collins,et al. The eigenvalue problem for structural systems with statistical properties. , 1969 .
[26] David R. Kincaid,et al. Linear Algebra: Theory and Applications , 2010 .
[27] Nitin Agarwal,et al. A domain adaptive stochastic collocation approach for analysis of MEMS under uncertainties , 2009, J. Comput. Phys..
[28] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[29] Rainer Helmig,et al. A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations , 2011 .
[30] W. T. Martin,et al. The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .
[31] Guillaume Bal,et al. Dynamical Polynomial Chaos Expansions and Long Time Evolution of Differential Equations with Random Forcing , 2016, SIAM/ASA J. Uncertain. Quantification.
[32] George E. Karniadakis,et al. Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs , 2006, J. Sci. Comput..
[33] O. L. Maître,et al. Uncertainty propagation in CFD using polynomial chaos decomposition , 2006 .
[34] Fabio Nobile,et al. Error Analysis of the Dynamically Orthogonal Approximation of Time Dependent Random PDEs , 2015, SIAM J. Sci. Comput..
[35] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[36] Thomas Y. Hou,et al. A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: Derivation and algorithms , 2013, J. Comput. Phys..
[37] Victor Montagud-Camps. Turbulence , 2019, Turbulent Heating and Anisotropy in the Solar Wind.
[38] Aarnout Brombacher,et al. Probability... , 2009, Qual. Reliab. Eng. Int..
[39] George E. Karniadakis,et al. The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications , 2008, J. Comput. Phys..
[40] D. Xiu,et al. Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .
[41] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[42] Franz S. Hover,et al. Uncertainty quantification in simulations of power systems: Multi-element polynomial chaos methods , 2010, Reliab. Eng. Syst. Saf..
[43] Xiang Ma,et al. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..
[44] Habib N. Najm,et al. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .
[45] Vito Volterra,et al. Leçons sur les équations intégrales et les équations intégro-différentielles , 1913 .
[46] Pol D. Spanos,et al. A stochastic Galerkin expansion for nonlinear random vibration analysis , 1993 .
[47] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[48] N. Zabaras,et al. Using stochastic analysis to capture unstable equilibrium in natural convection , 2005 .
[49] T. Sullivan. Introduction to Uncertainty Quantification , 2015 .
[50] Karl Iagnemma,et al. A polynomial chaos approach to the analysis of vehicle dynamics under uncertainty , 2012 .
[51] P. Holmes,et al. Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .
[52] Masanobu Shinozuka,et al. Weighted Integral Method. II: Response Variability and Reliability , 1991 .
[53] Hisanao Ogura,et al. Orthogonal functionals of the Poisson process , 1972, IEEE Trans. Inf. Theory.
[54] M. Schetzen,et al. Nonlinear system modeling based on the Wiener theory , 1981, Proceedings of the IEEE.
[55] R. Ghanem,et al. A stochastic projection method for fluid flow. I: basic formulation , 2001 .
[56] Minseok Choi,et al. A convergence study for SPDEs using combined Polynomial Chaos and Dynamically-Orthogonal schemes , 2013, J. Comput. Phys..
[57] N. Wiener,et al. Nonlinear Problems in Random Theory , 1964 .
[58] J. Butcher. The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .
[59] George Deodatis,et al. Weighted Integral Method. I: Stochastic Stiffness Matrix , 1991 .
[60] Dirk P. Kroese,et al. Handbook of Monte Carlo Methods , 2011 .
[61] Masanobu Shinozuka,et al. Response Variability of Stochastic Finite Element Systems , 1988 .
[62] Dongbin Xiu,et al. Minimal multi-element stochastic collocation for uncertainty quantification of discontinuous functions , 2013, J. Comput. Phys..
[63] Steven L. Brunton,et al. Long-time uncertainty propagation using generalized polynomial chaos and flow map composition , 2014, J. Comput. Phys..
[64] David Douglas Engel,et al. The Multiple Stochastic Integral , 1982 .
[65] T. Kailath,et al. Orthogonal functionals of independent-increment processes , 1976, IEEE Trans. Inf. Theory.
[66] G. Leobacher,et al. Introduction to Quasi-Monte Carlo Integration and Applications , 2014 .
[67] H. Najm,et al. A stochastic projection method for fluid flow II.: random process , 2002 .
[68] Wing Kam Liu,et al. Random field finite elements , 1986 .
[69] Thomas Y. Hou,et al. A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations , 2013, J. Comput. Phys..
[70] Masanobu Shinozuka,et al. Neumann Expansion for Stochastic Finite Element Analysis , 1988 .