Microstructure development of dispersion-strengthened tungsten due to neutron irradiation

[1]  A. Hasegawa,et al.  Effects of Re Content and Fabrication Process on Microstructural Changes and Hardening in Neutron Irradiated Tungsten , 2012 .

[2]  A. Hasegawa,et al.  Property change mechanism in tungsten under neutron irradiation in various reactors , 2011 .

[3]  A. Hasegawa,et al.  Microstructure Development in Neutron Irradiated Tungsten Alloys , 2011 .

[4]  M. Gilbert,et al.  Neutron-induced transmutation effects in W and W-alloys in a fusion environment , 2011 .

[5]  G. Pintsuk,et al.  Thermo-mechanical and thermal shock characterization of potassium doped tungsten , 2010 .

[6]  B. Wirth,et al.  Molecular dynamics simulation of dislocation–void interactions in BCC Mo , 2009 .

[7]  Akira Hasegawa,et al.  Development of ultra-fine grained W–(0.25–0.8)wt%TiC and its superior resistance to neutron and 3 MeV He-ion irradiations , 2008 .

[8]  M. Fujiwara,et al.  Effects of Transmutation Elements on Neutron Irradiation Hardening of Tungsten , 2007 .

[9]  M. Rieth,et al.  Limitations of W and W–1%La2O3 for use as structural materials , 2005 .

[10]  C. Broeders,et al.  Defect production efficiency in metals under neutron irradiation , 2004 .

[11]  J. Roth,et al.  Plasma facing and high heat flux materials-needs for ITER and beyond , 2002 .

[12]  P. Makarov,et al.  Development of tungsten-based vacuum melted and powder structural alloys , 2002 .

[13]  T. Noda,et al.  Transmutation and induced radioactivity of W in the armor and first wall of fusion reactors , 1998 .

[14]  M. Mabuchi,et al.  Deformation behavior and strengthening mechanisms at intermediate temperatures in W-La2O3 , 1997 .

[15]  Yasuo Yamada,et al.  Tensile properties at elevated temperature of W-1%La2O3 , 1996 .

[16]  H. Trinkaus,et al.  Radiation hardening revisited: role of intracascade clustering , 1997 .

[17]  Z. Meiling,et al.  The recrystallization mechanism of doped tungsten wire , 1990 .

[18]  A. Babak Quantitative correlation between fracture toughness K1C and the short-term strength σb, σ0·2 of tungsten , 1983 .

[19]  E. I. Uskov,et al.  High-temperature embrittlement of tungsten , 1983 .

[20]  A. Babak Effect of recrystallization on the fracture toughness of tungsten , 1983 .

[21]  E. I. Uskov,et al.  Recrystallization and embrittlement of sintered tungsten , 1982 .

[22]  D. B. Snow The recrystallization of commercially pure and doped tungsten wire drawn to high strain , 1979 .

[23]  P. Wright The high temperature creep behavior of doped tungsten wire , 1978 .

[24]  J. Steichen Tensile properties of neutron irradiated TZM and tungsten , 1976 .

[25]  D. B. Snow The identification of second phases within bubbles in annealed doped tungsten wire , 1974, Metallurgical and Materials Transactions B.

[26]  J. Pugh On the short time creep rupture , 1973 .

[27]  V. Sikka,et al.  Superlattice of voids in neutron‐irradiated tungsten , 1972 .

[28]  J. Moteff,et al.  Annealing of defect clusters in irradiated tungsten , 1971 .

[29]  J. Moteff,et al.  Comparison of microstructure with mechanical properties of irradiated tungsten , 1967 .

[30]  J. Stiegler,et al.  RECRYSTALLIZATION, GRAIN GROWTH, AND THE DUCTILE--BRITTLE TRANSITION IN TUNGSTEN SHEET. , 1967 .

[31]  E. I. Pavlova,et al.  Properties of tungsten-rhenium alloys , 1960 .