Asymptotic behavior of random determinants in the Laguerre, Gram and Jacobi ensembles

We consider properties of determinants of some random symmetric ma- trices issued from multivariate statistics: Wishart/Laguerre ensemble (sample co- variance matrices), Uniform Gram ensemble (sample correlation matrices) and Ja- cobi ensemble (MANOVA). If n is the size of the sample, r n the number of variates and Xn;r such a matrix, a generalization of the Bartlett-type theorems gives a decomposition of detXn;r into a product of r independent Gamma or Beta random variables. For n xed, we study the evolution as r grows, and then take the limit of large r and n with r=n = t 1. We derive limit theorems for the sequence of processes with independent increments fn 1 log detXn;bntc;t 2 (0;T )gn for T 1: convergence in probability, invariance principle, large deviations. Since the logarithm of the determinant is a linear statistic of the empirical spectral dis- tribution, we connect the results for marginals (xed t) with those obtained by the spectral method. Actually, all the results hold true for Coulomb gases or -models, if we dene the determinant as the product of charges. The classical matrix models (real, complex, and quaternionic) correspond to the particular values = 1; 2; 4 of the Dyson parameter.

[1]  M. Bartlett XX.—On the Theory of Statistical Regression. , 1934 .

[2]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[3]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[4]  Harry Kesten,et al.  Symmetric random walks on groups , 1959 .

[5]  Walter L. Smith Probability and Statistics , 1959, Nature.

[6]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[7]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[8]  Ingram Olkin,et al.  Multivariate Beta Distributions and Independence Properties of the Wishart Distribution , 1964 .

[9]  Calyampudi Radhakrishna Rao,et al.  Linear Statistical Inference and its Applications , 1967 .

[10]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[11]  F. N. David,et al.  LINEAR STATISTICAL INFERENCE AND ITS APPLICATION , 1967 .

[12]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[13]  R. Rockafellar Integrals which are convex functionals. II , 1968 .

[14]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[15]  M. Degroot,et al.  Probability and Statistics , 2021, Examining an Operational Approach to Teaching Probability.

[16]  B. McKay The expected eigenvalue distribution of a large regular graph , 1981 .

[17]  Dag Jonsson Some limit theorems for the eigenvalues of a sample covariance matrix , 1982 .

[18]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[19]  Steen A. Andersson,et al.  Distribution of Eigenvalues in Multivariate Statistical Analysis , 1983 .

[20]  Classical statistical analysis based on a certain hypercomplex multivariate normal distribution , 1984 .

[21]  John D. Dixon How Good is Hadamard’s Inequality for Determinants? , 1984, Canadian Mathematical Bulletin.

[22]  J. Schmee An Introduction to Multivariate Statistical Analysis , 1986 .

[23]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[24]  Vi︠a︡cheslav Leonidovich Girko,et al.  Theory of random determinants , 1990 .

[25]  Equations inf-convolutives et conjugaison de Moreau Fenchel , 1991 .

[26]  Richard P. Stanley,et al.  Some combinatorial aspects of the spectra of normally distributed random matrices , 1992 .

[27]  Arak M. Mathai,et al.  A handbook of generalized special functions for statistical and physical sciences , 1993 .

[28]  Amir Dembo,et al.  Large Deviations via Parameter Dependent Change of Measure, and an Application to the Lower Tail of Gaussian Processes , 1995 .

[29]  J. A. Díaz-García,et al.  Proof of the conjectures of H. uhlig on the singular multivariate beta and the Jacobian of a certain matrix transformation , 1997 .

[30]  A. M. Mathai Jacobians of matrix transformations and functions of matrix argument , 1997 .

[31]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[32]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[33]  Fumio Hiai,et al.  Eigenvalue Density of the Wishart Matrix and Large Deviations , 1998 .

[34]  A. Rukhin Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.

[35]  Fabrice Gamboa,et al.  A functional large deviations principle for quadratic forms of Gaussian stationary processes , 1999 .

[36]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[37]  Pascal Spincemaille,et al.  On quantum dynamics and statistics of vectors , 1999 .

[38]  A. M. Mathai Random p-content of a p-parallelotope in Euclidean n-space , 1999, Advances in Applied Probability.

[39]  F. Hiai,et al.  The semicircle law, free random variables, and entropy , 2006 .

[40]  Large deviations for Poisson random measures and processes with independent increments , 2000 .

[41]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[42]  John Abbott,et al.  How Tight is Hadamard's Bound? , 2001, Exp. Math..

[43]  Anatolii A. Puhalskii,et al.  Large Deviations and Idempotent Probability , 2001 .

[44]  J. Najim A Cramér Type Theorem for Weighted Random Variables , 2002 .

[45]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[46]  Ali Akhavi,et al.  Random lattices, threshold phenomena and efficient reduction algorithms , 2002, Theor. Comput. Sci..

[47]  Muni S. Srivastava,et al.  Singular Wishart and multivariate beta distributions , 2003 .

[48]  Loïc Chaumont,et al.  Exercises in probability , 2003 .

[49]  Tiefeng Jiang,et al.  The limiting distributions of eigenvalues of sample correlation matrices , 2004 .

[50]  R. Killip,et al.  Matrix models for circular ensembles , 2004, math/0410034.

[51]  Shmuel Friedland,et al.  Concentration of permanent estimators for certain large matrices , 2004 .

[52]  Z. Bai,et al.  CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data , 2017, Statistical Papers.

[53]  M. Capitaine,et al.  Asymptotic freeness by generalized moments for Gaussian and Wishart matrices. Application to beta random matrices , 2004 .

[54]  Michel Ledoux,et al.  Differential Operators and Spectral Distributions of Invariant Ensembles from the Classical Orthogonal Polynomials. The Continuous Case , 2004 .

[55]  Matrices aléatoires, processus stochastiques et groupes de réflexions , 2005 .

[56]  Mourad Ismail,et al.  Approximation Operators, Exponential, q-Exponential, and Free Exponential Families , 2005 .

[57]  H. Dette,et al.  Asymptotic properties of the algebraic moment range process , 2007 .

[58]  Benoit Collins Product of random projections, Jacobi ensembles and universality problems arising from free probability , 2005 .

[59]  G. Rempała,et al.  Asymptotics for products of independent sums with an application to Wishart determinants , 2005 .

[60]  Large deviations for functions of two random projection matrices , 2005, math/0504435.

[61]  E. H. Ismail Cauchy-stieltjes Kernel Families , 2006 .

[62]  On a class of free Lévy laws related to a regression problem , 2004, math/0410601.

[63]  W. Bryc Free Real Exponential Families , 2006 .

[64]  Yaakov Tsaig,et al.  Breakdown of equivalence between the minimal l1-norm solution and the sparsest solution , 2006, Signal Process..

[65]  Free Jacobi processes , 2006 .

[66]  Free Martingale polynomials for stationary Jacobi processes , 2007, 0711.2734.

[67]  Alan Edelman,et al.  The Beta-Jacobi Matrix Model, the CS Decomposition, and Generalized Singular Value Problems , 2008, Found. Comput. Math..

[68]  M. Ledoux DIFFERENTIAL OPERATORS AND SPECTRAL DISTRIBUTIONS OF INVARIANT ENSEMBLES FROM THE CLASSICAL ORTHOGONAL POLYNOMIALS: THE DISCRETE CASE , 2019 .