A new O(sqrt(n)L)-iteration predictor-corrector algorithm with wide neighborhood for semidefinite programming

In this paper, we extend the Ai-Zhang predictor-corrector method to the class of semidefinite programming. First, we define a new wide neighborhood N(@t,@b). Another key ingredient of our method is that we treat the classical Newton direction as the sum of two other directions, corresponding to respectively the negative part and the positive part of the right-hand-side. We prove that, besides the predictor steps, each corrector step also reduces the duality gap by a rate of 1-1O(n). Then the method enjoys the low iteration bound of O(nL), which is better than that of usual wide neighborhood algorithm O(nL), where n is the dimension of the problem and L=(X^0)^T*S^0@e with @e the required precision and (X^0,y^0,S^0) the initial interior solution.

[1]  Shinji Mizuno,et al.  On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming , 1993, Math. Oper. Res..

[2]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[3]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[4]  Yang Li,et al.  A New Class of Large Neighborhood Path-Following Interior Point Algorithms for Semidefinite Optimization with O(√n log (Tr(X0S0)/ε)) Iteration Complexity , 2010, SIAM J. Optim..

[5]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[6]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[7]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[8]  Mohammad H. Koulaei,et al.  On the Extension of a Mehrotra-Type Algorithm for Semidefinite Optimization , 2007 .

[9]  Yin Zhang,et al.  A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming , 1998, Math. Program..

[10]  Shuzhong Zhang,et al.  An O(\sqrtn L) Iteration Primal-dual Path-following Method, Based on Wide Neighborhoods and Large Updates, for Monotone LCP , 2005, SIAM J. Optim..

[11]  Yinyu Ye,et al.  On quadratic and $$O\left( {\sqrt {nL} } \right)$$ convergence of a predictor—corrector algorithm for LCP , 1993, Math. Program..

[12]  Jiming Peng,et al.  On Mehrotra-Type Predictor-Corrector Algorithms , 2007, SIAM J. Optim..

[13]  Jiming Peng,et al.  A Predictor-Corrector Algorithm for Linear Optimization Based on a Specific Self-Regular Proximity Function , 2005, SIAM J. Optim..

[14]  Florian A Potra,et al.  A superlinearly convergent predictor-corrector method for degenerate LCP in a wide neighborhood of the central path with $$O(\sqrt{n}L)$$-iteration complexity , 2007, Math. Program..

[15]  Clovis C. Gonzaga,et al.  Complexity of Predictor-Corrector Algorithms for LCP Based on a Large Neighborhood of the Central Path , 1999, SIAM J. Optim..

[16]  Yinyu Ye,et al.  A Class of Projective Transformations for Linear Programming , 1990, SIAM J. Comput..

[17]  Kim-Chuan Toh,et al.  On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..

[18]  Liang Fang,et al.  A wide neighbourhood interior-point method with iteration-complexity bound for semidefinite programming , 2010 .

[19]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[20]  Zengzhe Feng,et al.  A New Iteration Large-Update Primal-Dual Interior-Point Method for Second-Order Cone Programming , 2012 .

[21]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[22]  Florian A. Potra,et al.  A superlinearly convergent predictor-corrector method for degenerate LCP in a wide neighborhood of the central path with -iteration complexity , 2004, Math. Program..

[23]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[24]  Jun Ji,et al.  On the Local Convergence of a Predictor-Corrector Method for Semidefinite Programming , 1999, SIAM J. Optim..

[25]  Yin Zhang,et al.  Solving large-scale linear programs by interior-point methods under the Matlab ∗ Environment † , 1998 .

[26]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[27]  Yin Zhang,et al.  On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..