Metallaheteroborane chemistry: Part 16. Contrasting metal to heteroborane bonding modes in isoelectronic {MC2B9} and {MAs2B9} clusters. Synthesis and characterisation of [9-{Fe(CO)2(η5-C5H5)}-nido-7,8-C2B9H12], [7-{Fe(CO)2(η5-C5H5)}-nido-7,8-As2B9H10] and [7-{M(CO)2(η7-C7H7)}-nido-7,8-As2B9H10], whe

Structural details of previously reported [9-{Fe(CO)2(η5-C5H5)}-nido-7,8-C2B9H12] 1 and [7-{Fe(CO)2(η5-C5H5)}-nido-7,8-As2B9H10] 2, and of the new compounds [7-{M(CO)2(η7-C7H7)}-nido-7,8-As2B9H10], where M is Mo 3 or W 4, were established by 1H and 11B NMR spectroscopy and, for 1, 2 and 3, by single-crystal X-ray diffraction methods. The NMR data showed that the {C2B9} and {As2B9} cages were of the nido type, with each having a single bridging hydrogen atom on the open face of its cage. The X-ray diffraction study of 1 confirmed that the {Fe(CO)2(η5-C5H5)} unit is attached exo to the cage by an unusual interaction of the iron atom with a B–H bond. X-Ray diffraction studies of 2 and 3 showed that the transition-element atoms bonded to arsenic donor sites. The dimensions in the {Fe–H–B} region are Fe(1)–B(9) 2.377(1), Fe(1)–H(9) 1.59(2), B(9)–H(9) 1.25(2) A and Fe(1)–H(9)–B(9) 113(1)°. There was considerable disorder in the diarsenaborane cages and (ηn-CnHn) sections of the molecules 2 and 3. The principal interatomic distances of interest are Fe(1)–As(7) 2.334(1) A and Mo(1)–As(7) 2.598(1) A in 2 and 3, respectively. The 57Fe Mossbauer spectrum of 1, obtained at 78 K, comprised a well-resolved doublet with measured parameters δ = 0.113 mm s−1 and ΔEQ = 1.94 mm s−1. The bonding in the {Fe–H–B} region of 1, when compared with bonding in other ferraboranes, and with models that have been described for agostic hydrogen M–H–B and M–H–C interactions, is shown to be unique. Photolysis of 1 in tetrahydrofuran solution produces the known “mixed-sandwich” paramagnetic species [3-(η5-C5H5)-closo-3,1, 2-FeC2B9H11] 5 in 85% yield.

[1]  Anthony L. Spek,et al.  Journal of , 1993 .

[2]  J. Steed,et al.  Synthesis and characterisation of {Mo(η-L)(CO)3}+ (η-L = C5H5 or C5Me5) fragments ligated with [CB11H12]− and derivatives. Isolation and structural characterisation of an intermediate in a silver salt metathesis reaction , 2001 .

[3]  F. Laschi,et al.  Synthesis, structure, spectroscopic and electrochemical study of the paramagnetic compound [2-(η7-C7H7)-7,11-F2-2,1-closo-MoTeB10H8] , 2001 .

[4]  P. Jelliss,et al.  Contemporary bimetallic molecules: an unusual class of exo-closo metallacarbaboranes having no metal–metal bonds , 2000 .

[5]  F. Stone,et al.  Studies with the Rhenacarborane Cs[Re(CO)3(η5-7,8-C2B9H11)]: Surprising Reactivity with a Range of Metal Ligand Fragments† , 1999 .

[6]  C. Reed Carboranes: A New Class of Weakly Coordinating Anions for Strong Electrophiles, Oxidants, and Superacids , 1998 .

[7]  J. Kennedy,et al.  Metallaheteroborane chemistry: Part 14. Synthesis of the {MS2B7}-cluster compounds [9,9-(PX3)2-9,6,8-PtS2B7H7] (where X=Ph or OMe), [9,9-(PPh3)2-9,6,8-RhS2B7H8] and [5,5-(PPh3)2-5,6,10-RhS2B7H8], and the {M2S2B7}-cluster compound [(PPh3)2HRh(PPh3)ClRhS2B7H7] , 1998 .

[8]  A. Weller,et al.  Reversible on/off switching of interactions in rhodathiaboranes with “anomalous” electron counts. Synthesis and molecular structure of [(Ph3P2N][1-dppe-1,2-closo-RhSB9H9] , 1997 .

[9]  G. Rosair,et al.  8-[1,2-bis(diphenylphosphino)ethane]9,10-μ-hydrido-8-rhoda-7-thia-nido-undecaborane(10)dichloromethane (2/1) , 1996 .

[10]  G. Long,et al.  Small Heteroborane Cluster Systems. 6. Mössbauer Effect Study of Iron Substituted Small Metallaborane Clusters. , 1996, Inorganic chemistry.

[11]  N. Rath,et al.  Synthesis and Characterization of nido-[1,1,2,2-(CO)(4)-1,2-(PPh(3))(2)-1,2-FeIrB(2)H(5)]: A Heterobimetallaborane Analogue of nido-[B(4)H(7)](-). , 1996, Inorganic chemistry.

[12]  F. Teixidor,et al.  Modulation of Agostic B−H⇀Ru Bonds inexo-Monophosphino-7,8-Dicarba-nido-undecaborate Derivatives , 1996 .

[13]  L. Orlando,et al.  Borane Cluster Photochemistry. 3. The Photochemistry and Organometallic Rearrangement Chemistry of .sigma.-Metalated Small Borane Cluster Compounds , 1995 .

[14]  R. Gleiter,et al.  Borole derivatives. 20. Three-center Fe-H-B bonding in (borole)(cyclopentadienyl)hydridoiron derivatives. , 1994 .

[15]  T. Hambley,et al.  Crystal structures of [W(CO)5(PPh3)], [M(CO)5(AsPh3)] and [M(CO)5(SbPh3)](M = Mo or W): a comparative study of structure and bonding in [M(CO)5(EPh3)] complexes (E = P, as or Sb; M = Cr, Mo or W) , 1994 .

[16]  J. Hartwig,et al.  Transition metal boryl complexes: structure and reactivity of CpFe(CO)2Bcat and CpFe(CO)2BPh2 , 1993 .

[17]  S. A. Brew,et al.  The Interplay of Alkylidyne and Carbaborane Ligands at Metal Centers II: Proton-Mediated Reactions1 , 1993 .

[18]  T. Spalding,et al.  Characterisation of a new solid-state isomer of the [Fe5N(CO)14]– ion , 1993 .

[19]  Mare Gorzellik,et al.  Umsetzungen von molybdän-arsen-tetrahedranen mit Fe2(CO)9 und Fe3(CO)12 , 1992 .

[20]  L. Orlando,et al.  Small heteroborane cluster systems. 4. The photochemistry and organometallic rearrangement chemistry of small phosphorus-bridged borane cluster compounds: the sequential loss of boron vertices from small metallaboranes , 1992 .

[21]  J. Kennedy,et al.  Metallheteroborane chemistry. Part 8. —NMR study of some arsena‐ and stibaboranes and of the rhodadiarsenaboranes [3,3‐(PPh3)2‐3‐(H)‐closo‐3,1,2‐RhAs2B9H9] and [3‐(η5‐C5Me5)‐closo‐3,1,2‐RhAs2B9H9] , 1991 .

[22]  B. Nuber,et al.  Photolytische und thermische Umsetzungen von μ3-As[WCp(CO)2]3 mit Fe(CO)5 und Fe2(CO)9 ; Röntgenstrukturanalysen der Cluster FeW2Cp2(CO)7[μ3-As-WCp(CO)3], Fe2WCp(CO)8H[μ3-As-WCp(CO)3] und Fe2WCp(CO)8H[μ3-As-FeCp(CO)2] , 1991 .

[23]  T. Fehlner,et al.  Apparent oxidative coupling of the ferraborane dianion [B2H4Fe2(CO)6][Li]2. Preparation and structural characterization of conjuncto-B4H8Fe4(CO)12 , 1991 .

[24]  D. Reed,et al.  The structure of [7,8-C2B9H12]–; correction of a popular misconception , 1990 .

[25]  Malcolm L. H. Green,et al.  Synthesis of small nido-ferrapentaboranes; a novel borane-capped nido-diferrapentaborane , 1990 .

[26]  Peter S. White,et al.  NRCVAX ― an interactive-program system for structure analysis , 1989 .

[27]  C. Reed,et al.  Observations on silver salt metathesis reactions with very weakly coordinating anions , 1989 .

[28]  S. Crennell,et al.  Chemistry of polynuclear metal complexes with bridging carbene or carbyne ligands. Part 87. Docosahedral carbaborane(alkylidyne)tungsten complexes as reagents for the synthesis of compounds with heteronuclear metal–metal bonds: crystal structures of [NEt4][W(CC6H6Me2-2,6)(CO)2(η6-C2B10H10Me2)] and [ , 1989 .

[29]  L. Sneddon,et al.  Metal atom synthesis of metalloboron clusters. 10. Synthesis and structural characterization of (.eta.6-arene)thiaferraborane clusters , 1988 .

[30]  J. Kennedy,et al.  Metallaheteroborane chemistry. Part 3. Synthesis of [2,2-(PR3)2-1,2-TePtB10H10](R3= Et3, Bun3, or Me2Ph), their characterisation by nuclear magnetic resonance spectroscopy, and the crystal and molecular structure of [2,2-(PEt3)2-1,2-TePtB10H10] , 1988 .

[31]  C. Eigenbrot,et al.  Donor-acceptor metal-metal bonding instead of metathesis with Vaska's compound and the silver(I) salt of the weakly coordinating anion dodecahydrocarbaundecaborate(1-) , 1987 .

[32]  L. Toupet,et al.  Two-fragment addition of borohydride to iron complexes: synthesis of dithioformate iron complexes with B–H–Fe bond interaction. X-Ray structural characterization of Fe[η3-HC(SMe)S → B(H)H2](CO)(PMe3)2 , 1987 .

[33]  L. Sneddon,et al.  Metal atom synthesis of metallaboron clusters. 8. Synthesis of new cobalt, iron, and nickel clusters derived from 2,6-C2B7H11. Structural characterization of 2-[.eta.6-C6(CH3)3H3]Fe-1,6-C2B7H9, 6-[.eta.6-C6(CH3)3H3]Fe-9,10-C2B7H11, and 5,7,8-(CH3)3-11,7,8,10-[.eta.3-C4(CH3)4H]NiC3B7H7 , 1986 .

[34]  L. Sneddon,et al.  Metal atom synthesis of metalla boron clusters. 5. Synthesis of the first (.eta.6-arene)metallaborane and (.eta.6-arene)metallaoxaborane clusters. Structural characterizations of 5-[.eta.6-C6(CH3)3H3]FeB9H13 and 2-[.eta.6-C6(CH3)3H3]Fe-6-OB8H10 , 1984 .

[35]  S. Shore,et al.  A copper(I) derivative of a ferraborane: preparation, crystal, and molecular structure of Cu[P(C6H5)3]2B5H8Fe(CO)3 , 1979 .

[36]  F. Sato,et al.  Photolytic carbonyl insertion and solvolysis of 6-[(η5-C5H5)Fe(CO)2]B10H13 , 1977 .

[37]  T. Fehlner,et al.  The ferraborane B5H9Fe(CO)3 and its conjugate base B5H8Fe(CO)3 , 1976 .

[38]  Takakazu Yamamoto,et al.  The chemistry of some metalloborane derivatives having iron—boron single bonds , 1975 .

[39]  Takakazu Yamamoto,et al.  σ-Bonded complexes of some heteroatom boranes with iron and molybdenum derivatives , 1974 .

[40]  L. Sneddon,et al.  Iron(II) and -(III) metallocarboranes derived from nido-dicarbahexaborane(8) and closo dicarbaheptaborane(7) , 1973 .

[41]  L. Sneddon,et al.  Novel Iron-Carborane Mu- and Pi-Complexes Derived from Nido-C2B4H8. A Paramagnetic Small Carborane Sandwich Compound , 1972 .

[42]  A. Burke,et al.  MONOCARBON CARBORANES. IV. POLYHEDRAL ARSA- AND STIBACARBADODECABORANE (11) DERIVATIVES AND RELATED 11-ATOM CAGE FRAGMENTS. , 1970 .

[43]  M. Hawthorne,et al.  Carabametallic Boron Hydride Derivatives. III. The π-C5H5Fe(π-B9C2H11) System , 1965 .

[44]  T. E. Hopkins,et al.  The Crystal and Molecular Structure of C5H5FeB9C2H11 , 1965 .

[45]  M. Hawthorne,et al.  Dicarbaundecaborane(13) and Derivatives , 1964 .