Proximal Gradient Method for Solving Bilevel Optimization Problems

In this paper, we consider a bilevel optimization problem as a task of finding the optimum of the upper-level problem subject to the solution set of the split feasibility problem of fixed point problems and optimization problems. Based on proximal and gradient methods, we propose a strongly convergent iterative algorithm with an inertia effect solving the bilevel optimization problem under our consideration. Furthermore, we present a numerical example of our algorithm to illustrate its applicability.

[1]  Tran Viet Anh Linesearch methods for bilevel split pseudomonotone variational inequality problems , 2018, Numerical Algorithms.

[2]  Shih-sen Chang,et al.  Feasible iterative algorithms and strong convergence theorems for bi-level fixed point problems , 2016 .

[3]  Boris Polyak Some methods of speeding up the convergence of iteration methods , 1964 .

[4]  Herminia I. Calvete,et al.  Bilevel model for production-distribution planning solved by using ant colony optimization , 2011, Comput. Oper. Res..

[5]  Hong-Kun Xu,et al.  Solving the split feasibility problem without prior knowledge of matrix norms , 2012 .

[6]  Seifu Endris Yimer,et al.  Inertial Method for Bilevel Variational Inequality Problems with Fixed Point and Minimizer Point Constraints , 2019, Mathematics.

[7]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[8]  Yekini Shehu,et al.  An inertial extrapolation method for convex simple bilevel optimization , 2018, Optim. Methods Softw..

[9]  L. Muu,et al.  A projection-fixed point method for a class of bilevel variational inequalities with split fixed point constraints , 2016 .

[10]  J.-C. Yao,et al.  Some iterative methods for finding fixed points and for solving constrained convex minimization prob , 2011 .

[11]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[12]  Yair Censor,et al.  A multiprojection algorithm using Bregman projections in a product space , 1994, Numerical Algorithms.

[13]  P. Maingé Strong Convergence of Projected Subgradient Methods for Nonsmooth and Nonstrictly Convex Minimization , 2008 .

[14]  Lucas E. A. Simões,et al.  ϵ-subgradient algorithms for bilevel convex optimization , 2017, 1703.02648.

[15]  Yanlai Song Iterative methods for fixed point problems and generalized split feasibility problems in Banach spaces , 2018 .

[16]  Efstratios N. Pistikopoulos,et al.  Optimal design of dynamic systems under uncertainty , 1996 .

[17]  R. Boţ,et al.  An Inertial Proximal-Gradient Penalization Scheme for Constrained Convex Optimization Problems , 2017, Vietnam journal of mathematics.

[18]  C. Byrne,et al.  Iterative oblique projection onto convex sets and the split feasibility problem , 2002 .

[19]  Shimrit Shtern,et al.  A First Order Method for Solving Convex Bilevel Optimization Problems , 2017, SIAM J. Optim..

[20]  N. Xiu,et al.  A note on the CQ algorithm for the split feasibility problem , 2005 .

[21]  Marcia Helena Costa Fampa,et al.  Bilevel optimization applied to strategic pricing in competitive electricity markets , 2008, Comput. Optim. Appl..

[22]  Alexandre Cabot,et al.  Proximal Point Algorithm Controlled by a Slowly Vanishing Term: Applications to Hierarchical Minimization , 2005, SIAM J. Optim..

[23]  Yair Censor,et al.  Algorithms for the Split Variational Inequality Problem , 2010, Numerical Algorithms.

[24]  Wataru Takahashi,et al.  The split common null point problem and the shrinking projection method in Banach spaces , 2016 .

[25]  Hong-Kun Xu Iterative Algorithms for Nonlinear Operators , 2002 .

[26]  Hong-Kun Xu,et al.  Averaged Mappings and the Gradient-Projection Algorithm , 2011, J. Optim. Theory Appl..

[27]  Do Sang Kim,et al.  Extragradient subgradient methods for solving bilevel equilibrium problems , 2018, Journal of inequalities and applications.

[28]  P. L. Combettes,et al.  Equilibrium programming in Hilbert spaces , 2005 .