Optical Logic and Optically Accessed Digital Storage

A computer system can be divided according to its three principal functions: 1. The Processor Unit in which information streams interact. This is where the logic is implemented. Modern computer systems often utilize a number of processors [1]. 2. The Storage and/or Memory which acts as a repository for information. Typically this consists of a hierarchy [2] of subunits. The members of the hierarchy correspond to different trade-offs for access speed vs. capacity. Thus small amounts of information can be stored with a very rapid access capability. (There is unfortunately no universally accepted distinction between “Storage” and “Memory.” Most frequently, however, Memory refers to the faster portions of the hierarchy, where access can be highly selective, and where information is typically stored in physically distinguishable devices.) 3. The Input-Output Devices which act as transducers to the external world.

[1]  A. Hammond Optical Data Storage: Mass Memories for Future Computers? , 1973, Science.

[2]  Gordon J. Lasher,et al.  Mutually Quenched Injection Lasers as Bistable Devices , 1964, IBM J. Res. Dev..

[3]  H.H. Zappe,et al.  A subnanosecond Josephson tunneling memory cell with nondestructive readout , 1975, IEEE Journal of Solid-State Circuits.

[4]  Eiichi Goto,et al.  The Parametron, a Digital Computing Element Which Utilizes Parametric Oscillation , 1959, Proceedings of the IRE.

[5]  R.W. Keyes,et al.  Physical limits in digital electronics , 1975, Proceedings of the IEEE.

[6]  R V Pole,et al.  Integrated Optics: a Report on the 2nd OSA Topical Meeting. , 1975, Applied optics.

[7]  J. Brophy High-density magnetic recording , 1960 .

[8]  R L Mattson,et al.  Role of optical memories in computer storage. , 1974, Applied optics.

[9]  P. Guéret,et al.  Experimental observation of the switching transients resulting from single flux quantum transitions in superconducting Josephson devices , 1974 .

[10]  E. S. Barrekette,et al.  Topical meeting on optical storage of digital data. , 1974, Applied optics.

[11]  R. E. Matick,et al.  Review of current proposed technologies for mass storage systems , 1972 .

[12]  O. Tufte,et al.  Optical techniques for data storage , 1973, IEEE Spectrum.

[13]  Alan B. Fowler Cooperative Effect in GaAs Lasers , 1964 .

[14]  G. C. Feth,et al.  Memories are bigger, fasterߝand cheaper , 1973, IEEE spectrum.

[15]  L. Anderson Ferroelectrics in Optical Memories and Displays: A Critical Appraisal , 1972, IEEE Transactions on Sonics and Ultrasonics.

[16]  Andrew H. Eschenfelder The Use of Electronic Materials in Computer Memories , 1973 .

[17]  G. Lasher,et al.  Analysis of a proposed bistable injection laser , 1964 .

[18]  I. P. Breikss Computers: High-density data recording: Very high bit rates in the acquisition of digitized data are possible using this new technique , 1975, IEEE Spectrum.

[19]  A. N. Broers,et al.  Microcircuits by Electron Beam , 1972 .

[20]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[21]  H. N. Ghosh,et al.  Design and development of an ultralow-capacitance, high-performance pedestal transistor , 1971 .

[22]  H. L. Kalter,et al.  An 8-k bit random-access memory chip using a one-device FET cell , 1973 .

[23]  C. Mee A comparison of bubble and disk storage technologies , 1976 .

[24]  E. O. Schulz-Dubois,et al.  Laser Handbook , 1972 .

[25]  H. Haken Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems , 1975 .

[26]  W. Henkels,et al.  An elementary logic circuit employing superconducting Josephson tunneling gates , 1974 .

[27]  J. DeCillo 150 picosecond germanium emitter follower current switch circuit , 1968 .

[28]  J. Huignard,et al.  Coherent selective erasure of superimposed volume holograms in LiNbO3 , 1975 .

[29]  R. Keyes Power dissipation in information processing. , 1970, Science.

[30]  Holographic laser beam deflector. , 1975, Applied optics.

[31]  A. V. Pohm,et al.  Proposal for a 1012bit flexible disk pack memory , 1972 .

[32]  P. Hutchinson,et al.  Defect structure of degraded heterojunction GaAlAs−GaAs lasers , 1975 .

[33]  John C. Marinace,et al.  GaAs Injection Laser with Novel Mode Control and Switching Properties , 1965 .

[34]  F. Micheron,et al.  Electrical control in photoferroelectric materials for optical storage. , 1974, Applied optics.

[35]  Karl E. Ganzhorn Prinzipien in Rechnerstrukturen. , 1973 .

[36]  O. N. Tufte,et al.  Optical memories: controlling the beam , 1973, IEEE Spectrum.

[37]  A. Fowler,et al.  QUENCHING OF GALLIUM‐ARSENIDE INJECTION LASERS , 1963 .

[38]  Benjamin Kazan,et al.  Electronic Image Storage , 1969 .

[39]  Eiiti Wada,et al.  Esaki Diode High-Speed Logical Circuits , 1960, IRE Trans. Electron. Comput..

[40]  R W Keyes,et al.  Thermal limitations in optical logic. , 1969, Applied optics.

[41]  Hans H. Zappe,et al.  A single flux quantum Josephson junction memory cell , 1974 .