On the Parameterised Complexity of Induced Multipartite Graph Parameters

We introduce a family of graph parameters, called induced multipartite graph parameters, and study their computational complexity. First, we consider the following decision problem: an instance is an induced multipartite graph parameter $p$ and a given graph $G$, and for natural numbers $k\geq2$ and $\ell$, we must decide whether the maximum value of $p$ over all induced $k$-partite subgraphs of $G$ is at most $\ell$. We prove that this problem is W[1]-hard. Next, we consider a variant of this problem, where we must decide whether the given graph $G$ contains a sufficiently large induced $k$-partite subgraph $H$ such that $p(H)\leq\ell$. We show that for certain parameters this problem is para-NP-hard, while for others it is fixed-parameter tractable.

[1]  Martin E. Dyer,et al.  Counting independent sets in graphs with bounded bipartite pathwidth , 2018, WG.

[2]  Andreas Björklund,et al.  Set Partitioning via Inclusion-Exclusion , 2009, SIAM J. Comput..

[3]  David R. Wood,et al.  Graph Minors and Minimum Degree , 2008, Electron. J. Comb..

[4]  Paschos,et al.  Laboratoire D'analyse Et Modélisation De Systèmes Pour L'aide À La Décision Cahier Du Lamsade 217 Completeness in Standard and Differential Approximation Classes: Poly(d)apx-and Ptas-completeness Completeness in Standard and Differential Approximation Classes: Poly-(d)apx-and (d)ptas-completeness , 2022 .

[5]  Noga Alon,et al.  Every monotone graph property is testable , 2005, STOC '05.

[6]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[7]  Dean G. Hoffman,et al.  The chromatic index of complete multipartite graphs , 1992, J. Graph Theory.

[8]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[9]  Paul D. Seymour,et al.  Graph minors. III. Planar tree-width , 1984, J. Comb. Theory B.

[10]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[11]  David S. Johnson,et al.  Some simplified NP-complete problems , 1974, STOC '74.

[12]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[13]  Bruno Courcelle,et al.  The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues , 1992, RAIRO Theor. Informatics Appl..