Selective and Responsive Nanoreactors

Chemical reactions can be confined to nanoscale compartments by encapsulating catalysts in hollow nanoobjects. Such reaction compartments effectively become nanoreactors when substrate and product are exchanged between bulk solution and cavity. A key issue, thereby, is control of shell permeability. Nanoreactors exhibit selectivity and responsiveness if their shells discriminate among molecules and if access can be modulated by external triggers. Here, we review natural nanoreactors that include protein-based bacterial microcompartments, protein cages, and viruses. Artificial nanoreactors based on dendrimers, layer-by-layer capsules, and amphiphilic block copolymer polymersomes are also discussed. Selectivity in these nanoreactors is either due to intrinsic reactor-shell semipermeability or can be engineered using smart polymers to gate the reactors. Moreover, a rich repertoire of pores and channels are already provided in nature, e. g., in protein-based nanoreactors or in trans-membrane channel proteins. The latter can be reconstituted in polymersomes, resulting in gated vesicles. Nanoreactors hold promise for applications ranging from selective and size-constrained organic synthesis to biomedical advances (e.g., artificial organelles, biosensing) and as analytical tools to study reaction mechanisms.

[1]  H. Nikaido Molecular Basis of Bacterial Outer Membrane Permeability Revisited , 2003, Microbiology and Molecular Biology Reviews.

[2]  Boris Martinac,et al.  Open channel structure of MscL and the gating mechanism of mechanosensitive channels , 2002, Nature.

[3]  A. Kishimura,et al.  Semipermeable polymer vesicle (PICsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers: physiologically stable micro-/nanocontainers of water-soluble macromolecules. , 2006, Journal of the American Chemical Society.

[4]  H. Möhwald,et al.  Polymeric microcapsules with light responsive properties for encapsulation and release. , 2010, Advances in colloid and interface science.

[5]  M. Young,et al.  Monitoring biomimetic platinum nanocluster formation using mass spectrometry and cluster-dependent H2 production. , 2008, Angewandte Chemie.

[6]  Mathias Winterhalter,et al.  Nanoreactors based on (polymerized) ABA-triblock copolymer vesicles , 2000 .

[7]  Markus Antonietti,et al.  Vesicles and Liposomes: A Self‐Assembly Principle Beyond Lipids , 2003 .

[8]  T. Yeates,et al.  Bacterial microcompartments: their properties and paradoxes , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[9]  E. Chiancone,et al.  Thermal stability of horse spleen apoferritin and human recombinant H apoferritin. , 1996, Archives of biochemistry and biophysics.

[10]  Madhavan Nallani,et al.  Sorting catalytically active polymersome nanoreactors by flow cytometry. , 2009, Small.

[11]  Roeland J. M. Nolte,et al.  A Polymersome Nanoreactor with Controllable Permeability Induced by Stimuli‐Responsive Block Copolymers , 2009 .

[12]  Amy S. H. King,et al.  Catalysis inside dendrimers. , 2002, Chemical Society reviews.

[13]  A. Graff,et al.  Virus-assisted loading of polymer nanocontainer , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S. Günther,et al.  Structural basis of enzyme encapsulation into a bacterial nanocompartment , 2008, Nature Structural &Molecular Biology.

[15]  Trevor Douglas,et al.  Biological Containers: Protein Cages as Multifunctional Nanoplatforms , 2007 .

[16]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[17]  M. Rondon,et al.  Glutathione is required for maximal transcription of the cobalamin biosynthetic and 1,2-propanediol utilization (cob/pdu) regulon and for the catabolism of ethanolamine, 1,2-propanediol, and propionate in Salmonella typhimurium LT2 , 1995, Journal of bacteriology.

[18]  Stephan Marsch,et al.  Cell-specific integration of artificial organelles based on functionalized polymer vesicles. , 2008, Nano letters.

[19]  Yuehe Lin,et al.  Preparation of Homogeneous Gold−Silver Alloy Nanoparticles Using the Apoferritin Cavity As a Nanoreactor , 2010 .

[20]  D. Clark,et al.  Solubilization and stabilization of bacteriophage MS2 in organic solvents , 2007, Biotechnology and bioengineering.

[21]  Cornelia G Palivan,et al.  SOD antioxidant nanoreactors: influence of block copolymer composition on the nanoreactor efficiency. , 2010, Macromolecular bioscience.

[22]  Trevor Douglas,et al.  Viruses: Making Friends with Old Foes , 2006, Science.

[23]  R. Nolte,et al.  Cascade reactions in an all-enzyme nanoreactor. , 2009, Chemistry.

[24]  S. Ganta,et al.  A review of stimuli-responsive nanocarriers for drug and gene delivery. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[25]  A. Eisenberg,et al.  Active loading and tunable release of doxorubicin from block copolymer vesicles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[26]  W. Meier,et al.  Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery. , 2009, Macromolecular bioscience.

[27]  M. Rondon,et al.  DNA polymerase I function is required for the utilization of ethanolamine, 1,2-propanediol, and propionate by Salmonella typhimurium LT2 , 1995, Journal of bacteriology.

[28]  I. Listowsky,et al.  Denaturation of horse spleen ferritin in aqueous guanidinium chloride solutions. , 1972, Biochemistry.

[29]  K. Diederichs,et al.  Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. , 1998, Science.

[30]  Dennis E Discher,et al.  Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[31]  Wolfgang Meier,et al.  Immobilized protein-polymer nanoreactors. , 2009, Small.

[32]  K. Hanabusa,et al.  Temperature-Sensitive Dendritic Hosts: Synthesis, Characterization, and Control of Catalytic Activity , 2000 .

[33]  G. Sukhorukov,et al.  Polyelectrolyte Multilayer Microspheres as Carriers for Bienzyme System: Preparation and Characterization , 2005 .

[34]  V. Braun,et al.  The β‐barrel domain of FhuAΔ5‐160 is sufficient for TonB‐dependent FhuA activities of Escherichia coli , 1999, Molecular microbiology.

[35]  Robert Huber,et al.  Crystal Structure of the Thermosome, the Archaeal Chaperonin and Homolog of CCT , 1998, Cell.

[36]  G. Sukhorukov,et al.  Nanoparticle Synthesis in Engineered Organic Nanoscale Reactors , 2004 .

[37]  G. Sukhorukov,et al.  Polyelectrolyte multilayer capsules as vehicles with tunable permeability. , 2004, Advances in colloid and interface science.

[38]  P. Harrison,et al.  Mineralization in ferritin: an efficient means of iron storage. , 1999, Journal of structural biology.

[39]  Todd O Yeates,et al.  Structure and Mechanisms of a Protein-Based Organelle in Escherichia coli , 2010, Science.

[40]  H. Möhwald,et al.  Layer-by-layer engineering of biocompatible, decomposable core-shell structures. , 2003, Biomacromolecules.

[41]  Holger Schönherr,et al.  Block-copolymer vesicles as nanoreactors for enzymatic reactions. , 2009, Small.

[42]  J. Jenkins,et al.  The structure of OmpF porin in a tetragonal crystal form. , 1995, Structure.

[43]  G. Rummel,et al.  Crystal structures explain functional properties of two E. coli porins , 1992, Nature.

[44]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[45]  W. Meier,et al.  Calcein Release from Polymeric Vesicles in Blood Plasma and PVA Hydrogel , 2009, Pharmaceutical Research.

[46]  C. Hawker,et al.  Synthesis and Catalytic Activity of Unimolecular Dendritic Reverse Micelles with “Internal” Functional Groups , 1999 .

[47]  Stephan Marsch,et al.  Toward intelligent nanosize bioreactors: a pH-switchable, channel-equipped, functional polymer nanocontainer. , 2006, Nano letters.

[48]  A. Clarke,et al.  Chaperonins: The hunt for the Group II mechanism. , 2008, Archives of biochemistry and biophysics.

[49]  R. Nolte,et al.  Monodisperse polymer-virus hybrid nanoparticles. , 2007, Organic & biomolecular chemistry.

[50]  Elizabeth C. Theil,et al.  GATED PORES IN THE FERRITIN PROTEIN NANOCAGE. , 2008, Inorganica chimica acta.

[51]  Stephan Marsch,et al.  Inhibition of Macrophage Phagocytotic Activity by a Receptor-targeted Polymer Vesicle-based Drug Delivery Formulation of Pravastatin , 2008, Journal of cardiovascular pharmacology.

[52]  I. Arends,et al.  Biocatalytic oxidation by chloroperoxidase from Caldariomyces fumago in polymersome nanoreactors. , 2009, Organic and biomolecular chemistry.

[53]  Frank Bates,et al.  Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. , 2006, Molecular pharmaceutics.

[54]  D. Tsernoglou,et al.  The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site , 2000, Nature Structural Biology.

[55]  Frank Caruso,et al.  Layer-by-layer engineered capsules and their applications , 2006 .

[56]  B. Böttcher,et al.  The gross structure of the respiratory complex I: a Lego System. , 2004, Biochimica et biophysica acta.

[57]  M. Young,et al.  Photocatalytic synthesis of copper colloids from CuII by the ferrihydrite core of ferritin. , 2004, Inorganic chemistry.

[58]  Inge J. Minten,et al.  Controlled encapsulation of multiple proteins in virus capsids. , 2009, Journal of the American Chemical Society.

[59]  H. Nikaido,et al.  Porins and specific channels of bacterial outer membranes , 1992, Molecular microbiology.

[60]  G. Erker,et al.  Noncovalent insertion of ferrocenes into the protein shell of apo-ferritin. , 2008, Chemical communications.

[61]  Madhavan Nallani,et al.  Polymersome nanoreactors for enzymatic ring-opening polymerization. , 2007, Biomacromolecules.

[62]  S. Sukhishvili Responsive polymer films and capsules via layer-by-layer assembly , 2005 .

[63]  Ichiro Yamato,et al.  Molecular origin of the cation selectivity in OmpF porin: single channel conductances vs. free energy calculation. , 2003, Biophysical chemistry.

[64]  P. Boulanger,et al.  FhuA, a transporter of the Escherichia coli outer membrane, is converted into a channel upon binding of bacteriophage T5. , 1996, The EMBO journal.

[65]  C. Hawker,et al.  Effects of Polymer Architecture and Nanoenvironment in Acylation Reactions Employing Dendritic (Dialkylamino)pyridine Catalysts , 2005 .

[66]  Hyo-Jick Choi,et al.  Artificial organelle: ATP synthesis from cellular mimetic polymersomes. , 2005, Nano letters.

[67]  Elizabeth C. Theil,et al.  Opening protein pores with chaotropes enhances Fe reduction and chelation of Fe from the ferritin biomineral , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[68]  K. Hirata,et al.  Polymerization of phenylacetylene by rhodium complexes within a discrete space of apo-ferritin. , 2009, Journal of the American Chemical Society.

[69]  B. Le Droumaguet,et al.  In situ ATRP-mediated hierarchical formation of giant amphiphile bionanoreactors. , 2008, Angewandte Chemie.

[70]  Florence Tama,et al.  The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus. , 2002, Journal of molecular biology.

[71]  U. Schwaneberg,et al.  Functionalized nanocompartments (synthosomes) with a reduction-triggered release system. , 2008, Angewandte Chemie.

[72]  R. Dutzler,et al.  Channel specificity: structural basis for sugar discrimination and differential flux rates in maltoporin. , 1997, Journal of molecular biology.

[73]  Johannes Schmitt,et al.  Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces , 1992 .

[74]  H. Möhwald,et al.  Shell-in-shell microcapsules: a novel tool for integrated, spatially confined enzymatic reactions. , 2007, Angewandte Chemie.

[75]  I. Taylor,et al.  Assembly of a 20-nm protein cage by Escherichia coli 2-hydroxypentadienoic acid hydratase. , 2010, Journal of molecular biology.

[76]  H. Bayley,et al.  Temperature-responsive protein pores. , 2006, Journal of the American Chemical Society.

[77]  K. Suslick,et al.  Dendrimer-metalloporphyrins: Synthesis and catalysis , 1996 .

[78]  Joost N H Reek,et al.  Reactivity within a confined self-assembled nanospace. , 2008, Chemical Society reviews.

[79]  James K. Stoops,et al.  The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[80]  R. Nolte,et al.  Vesicles and polymerized vesicles from thiophene-containing rod-coil block copolymers. , 2003, Angewandte Chemie.

[81]  C. Palivan,et al.  Amphiphilic copolymer membranes promote NADH:Ubiquinone Oxidoreductase activity : towards an electron-transfer nanodevice , 2010 .

[82]  Rachel K. O'Reilly,et al.  Advances and challenges in smart and functional polymer vesicles , 2009 .

[83]  W. Meier,et al.  Vesicles with asymmetric membranes from amphiphilic ABC triblock copolymers. , 2002, Chemical communications.

[84]  R. Huber,et al.  Studies on the lumazine synthase/riboflavin synthase complex of Bacillus subtilis: crystal structure analysis of reconstituted, icosahedral beta-subunit capsids with bound substrate analogue inhibitor at 2.4 A resolution. , 1995, Journal of molecular biology.

[85]  D. Hammer,et al.  Polymersomes: tough vesicles made from diblock copolymers. , 1999, Science.

[86]  Malar A. Azagarsamy,et al.  Disassembly of dendritic micellar containers due to protein binding. , 2010, Journal of the American Chemical Society.

[87]  D. Trau,et al.  Diffusion Controlled and Temperature Stable Microcapsule Reaction Compartments for High‐Throughput Microcapsule‐PCR , 2008 .

[88]  J. Moser,et al.  Light induced redox reactions involving mammalian ferritin as photocatalyst. , 1997, Journal of photochemistry and photobiology. B, Biology.

[89]  M. Woodle,et al.  Sterically stabilized liposomes. , 1992, Biochimica et biophysica acta.

[90]  Özkan Yildiz,et al.  Structure of the monomeric outer‐membrane porin OmpG in the open and closed conformation , 2006, The EMBO journal.

[91]  Zhiyuan Zhong,et al.  Stimuli-responsive polymersomes for programmed drug delivery. , 2009, Biomacromolecules.

[92]  W. Gelbart,et al.  Packaging of a polymer by a viral capsid: the interplay between polymer length and capsid size. , 2008, Biophysical journal.

[93]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[94]  B. Gallois,et al.  X-ray structure of recombinant horse L-chain apoferritin at 2.0 Å resolution: implications for stability and function , 1997, JBIC Journal of Biological Inorganic Chemistry.

[95]  W. Meier,et al.  Observing Proteins as Single Molecules Encapsulated in Surface‐Tethered Polymeric Nanocontainers , 2009, Chembiochem : a European journal of chemical biology.

[96]  Mathias Winterhalter,et al.  Amphiphilic block copolymer nanocontainers as bioreactors , 2001 .

[97]  H. Saibil,et al.  Domain rotations between open, closed and bullet-shaped forms of the thermosome, an archaeal chaperonin. , 2000, Journal of molecular biology.

[98]  Madhavan Nallani,et al.  Biohybrid polymer capsules. , 2009, Chemical reviews.

[99]  Dumas,et al.  Understanding the function of bacterial outer membrane channels by reconstitution into black lipid membranes , 2000, Biophysical chemistry.

[100]  Mathias Winterhalter,et al.  Reconstitution of Channel Proteins in (Polymerized) ABA Triblock Copolymer Membranes , 2000 .

[101]  C. Palivan,et al.  Amphiphilic diblock copolymers for molecular recognition: metal-nitrilotriacetic acid functionalized vesicles. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[102]  Sung-Hou Kim,et al.  Crystal structure of a small heat-shock protein , 1998, Nature.

[103]  Johannes A A W Elemans,et al.  Self-assembled nanoreactors. , 2005, Chemical reviews.

[104]  T. Yeates,et al.  Atomic-Level Models of the Bacterial Carboxysome Shell , 2008, Science.

[105]  G. Erker,et al.  Control of the coordination structure of organometallic palladium complexes in an apo-ferritin cage. , 2008, Journal of the American Chemical Society.

[106]  Martin Fischlechner,et al.  Viruses as building blocks for materials and devices. , 2007, Angewandte Chemie.

[107]  F. Bates,et al.  Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. , 2000, Biotechnology and bioengineering.

[108]  Peter Agre,et al.  Aquaporin water channels (Nobel Lecture). , 2004, Angewandte Chemie.

[109]  W. Meier,et al.  Biomimetic membranes designed from amphiphilic block copolymers. , 2006, Soft matter.

[110]  Martin Müller,et al.  Oxidation-responsive polymeric vesicles , 2004, Nature materials.

[111]  Gleb B Sukhorukov,et al.  Release mechanisms for polyelectrolyte capsules. , 2007, Chemical Society reviews.

[112]  Aldo Jesorka,et al.  Liposomes: technologies and analytical applications. , 2008, Annual review of analytical chemistry.

[113]  Roeland J. M. Nolte,et al.  Polymersomes: Small 10/2009 , 2009 .

[114]  D. Astruc,et al.  Dendritic catalysts and dendrimers in catalysis. , 2001, Chemical reviews.

[115]  Yajun Wang,et al.  Triggered enzymatic degradation of DNA within selectively permeable polymer capsule microreactors. , 2009, Angewandte Chemie.

[116]  O. Katare,et al.  Liposomal drug delivery systems--clinical applications. , 2005, Acta pharmaceutica.

[117]  W. Plaxton,et al.  Purification and Characterization of a Potato Tuber Acid Phosphatase Having Significant Phosphotyrosine Phosphatase Activity , 1994, Plant physiology.

[118]  Olivier Casse,et al.  Antioxidant nanoreactor based on superoxide dismutase encapsulated in superoxide-permeable vesicles. , 2008, The journal of physical chemistry. B.

[119]  Jean M. J. Fréchet,et al.  Dendritic Encapsulation of Function: Applying Nature's Site Isolation Principle from Biomimetics to Materials Science. , 2001, Angewandte Chemie.

[120]  Wah Chiu,et al.  Mechanism of lid closure in the eukaryotic chaperonin TRiC/CCT , 2008, Nature Structural &Molecular Biology.

[121]  D. Fu,et al.  Crystal Structure of AqpZ Tetramer Reveals Two Distinct Arg-189 Conformations Associated with Water Permeation through the Narrowest Constriction of the Water-conducting Channel* , 2006, Journal of Biological Chemistry.

[122]  J. Frame,et al.  Molecular entrapment of small molecules within the interior of horse spleen ferritin. , 1994, Archives of biochemistry and biophysics.

[123]  John E. Johnson,et al.  Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. , 1995, Structure.

[124]  G. Cannon,et al.  Transcript analysis of the Halothiobacillus neapolitanus cso operon , 2008, Archives of Microbiology.

[125]  K. Nagayama,et al.  Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. , 2004, Angewandte Chemie.

[126]  Nico A J M Sommerdijk,et al.  A virus-based single-enzyme nanoreactor. , 2007, Nature nanotechnology.

[127]  J. W. Peters,et al.  Biomimetic synthesis of a H2 catalyst using a protein cage architecture. , 2005, Nano letters.

[128]  Gleb B. Sukhorukov,et al.  Urease encapsulation in nanoorganized microshells. , 2001 .

[129]  J. Reymond,et al.  Dendrimers as artificial enzymes. , 2005, Current opinion in chemical biology.

[130]  Jennifer Griffiths,et al.  The realm of the nanopore. Interest in nanoscale research has skyrocketed, and the humble pore has become a king. , 2008, Analytical chemistry.

[131]  T. Yeates,et al.  Protein-based organelles in bacteria: carboxysomes and related microcompartments , 2008, Nature Reviews Microbiology.

[132]  T. Yeates,et al.  Structural Analysis of CsoS1A and the Protein Shell of the Halothiobacillus neapolitanus Carboxysome , 2007, PLoS Biology.

[133]  M. Young,et al.  Metal binding to cowpea chlorotic mottle virus using terbium(III) fluorescence , 2003, JBIC Journal of Biological Inorganic Chemistry.

[134]  H. Möhwald,et al.  Fabrication of micro reaction cages with tailored properties. , 2001, Journal of the American Chemical Society.

[135]  R. Benz,et al.  Ion selectivity of gram-negative bacterial porins , 1985, Journal of bacteriology.

[136]  Mathias Winterhalter,et al.  A nanocompartment system (Synthosome) designed for biotechnological applications. , 2006, Journal of biotechnology.

[137]  B. Sumerlin,et al.  Future perspectives and recent advances in stimuli-responsive materials , 2010 .

[138]  Helmuth Möhwald,et al.  Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. , 1998, Angewandte Chemie.

[139]  Elizabeth C. Theil,et al.  Ferritins: dynamic management of biological iron and oxygen chemistry. , 2005, Accounts of chemical research.

[140]  C. Palivan,et al.  Protein delivery: from conventional drug delivery carriers to polymeric nanoreactors , 2010, Expert opinion on drug delivery.

[141]  Wolfgang Meier,et al.  Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes , 2005 .

[142]  Jennifer Griffiths,et al.  The Realm of the Nanopore , 2008 .

[143]  Martin Phillips,et al.  Protein Structures Forming the Shell of Primitive Bacterial Organelles , 2005, Science.

[144]  Stephan Marsch,et al.  Cell targeting by a generic receptor-targeted polymer nanocontainer platform. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[145]  J. Kopeček,et al.  Intracellular targeting of polymer-bound drugs for cancer chemotherapy. , 2005, Advanced drug delivery reviews.

[146]  Xiaoran Fu Stowell,et al.  Design of functional ferritin-like proteins with hydrophobic cavities. , 2006, Journal of the American Chemical Society.

[147]  Jan Steyaert,et al.  Therapeutic nanoreactors: combining chemistry and biology in a novel triblock copolymer drug delivery system. , 2005, Nano letters.

[148]  Z. Siwy,et al.  Nanopore analytics: sensing of single molecules. , 2009, Chemical Society reviews.

[149]  R. Nolte,et al.  Viruses and protein cages as nanocontainers and nanoreactors , 2009 .

[150]  G. Decher,et al.  Creation and structural comparison of ultrathin film assemblies: transferred freely suspended films and Langmuir-Blodgett films of liquid crystals , 1992 .

[151]  Sung-Hou Kim,et al.  Purification, Crystallization, and Preliminary X-Ray Crystallographic Data Analysis of Small Heat Shock Protein Homolog fromMethanococcus jannaschii,a Hyperthermophile☆ , 1998 .

[152]  Ulrich Brandt,et al.  Energy converting NADH:quinone oxidoreductase (complex I). , 2006, Annual review of biochemistry.

[153]  P. van Gelder,et al.  Structure and function of bacterial outer membrane proteins: barrels in a nutshell , 2000, Molecular microbiology.

[154]  D. Astruc,et al.  Dendritic catalysis: Major concepts and recent progress , 2006 .

[155]  Marilena Loizidou,et al.  Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. , 2009, Trends in pharmacological sciences.

[156]  T. Douglas,et al.  Some Enzymes Just Need a Space of Their Own , 2010, Science.

[157]  Trevor Douglas,et al.  Structural transitions in Cowpea chlorotic mottle virus (CCMV) , 2005, Physical biology.

[158]  Malar A. Azagarsamy,et al.  Enzyme-triggered disassembly of dendrimer-based amphiphilic nanocontainers. , 2009, Journal of the American Chemical Society.

[159]  G. E. El Maghraby,et al.  Liposomes and skin: from drug delivery to model membranes. , 2008, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[160]  John E. Johnson,et al.  Quasi-equivalent viruses: a paradigm for protein assemblies. , 1997, Journal of molecular biology.

[161]  R. Nolte,et al.  Viral capsids as templates for the production of monodisperse Prussian blue nanoparticles. , 2008, Chemical communications.

[162]  Timothy A. Whitehead,et al.  Mechanical nanosensor based on FRET within a thermosome: damage-reporting polymeric materials. , 2009, Angewandte Chemie.

[163]  M. Badger,et al.  Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. , 2008, Journal of experimental botany.

[164]  T. Bobik,et al.  Microcompartments for B12-Dependent 1,2-Propanediol Degradation Provide Protection from DNA and Cellular Damage by a Reactive Metabolic Intermediate , 2008, Journal of bacteriology.

[165]  U. Linne,et al.  On the function and structure of synthetically modified porins. , 2009, Angewandte Chemie.

[166]  Paolo Arosio,et al.  Ferritins: a family of molecules for iron storage, antioxidation and more. , 2009, Biochimica et biophysica acta.

[167]  Trevor Douglas,et al.  Host–guest encapsulation of materials by assembled virus protein cages , 1998, Nature.

[168]  T. Yeates,et al.  Structure of the PduU shell protein from the Pdu microcompartment of Salmonella. , 2008, Structure.

[169]  J. Roth,et al.  Conserving a Volatile Metabolite: a Role for Carboxysome-Like Organelles in Salmonella enterica , 2006, Journal of bacteriology.

[170]  Madhavan Nallani,et al.  A three-enzyme cascade reaction through positional assembly of enzymes in a polymersome nanoreactor. , 2009, Chemistry.

[171]  Jan C M van Hest,et al.  Positional assembly of enzymes in polymersome nanoreactors for cascade reactions. , 2007, Angewandte Chemie.

[172]  U. Schwaneberg,et al.  Functionalized nanocompartments (Synthosomes): Limitations and prospective applications in industrial biotechnology , 2006, Biotechnology journal.

[173]  H. Möhwald,et al.  Physical chemistry of encapsulation and release , 2004 .

[174]  Ronnie Willaert,et al.  Assessment of stability, toxicity and immunogenicity of new polymeric nanoreactors for use in enzyme replacement therapy of MNGIE. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[175]  B. van den Berg,et al.  Crystal structure of the bacterial nucleoside transporter Tsx , 2004, The EMBO journal.

[176]  Jeffrey A Hubbell,et al.  Glucose-oxidase based self-destructing polymeric vesicles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[177]  Madhavan Nallani,et al.  Enzymes containing porous polymersomes as nano reaction vessels for cascade reactions. , 2008, Organic & biomolecular chemistry.

[178]  Yechezkel Barenholz,et al.  Liposome application: problems and prospects , 2001 .

[179]  I. S. Zanaveskina,et al.  Urease-catalyzed carbonate precipitation inside the restricted volume of polyelectrolyte capsules , 2003 .

[180]  Lisa Pakstis,et al.  Stimuli-responsive polypeptide vesicles by conformation-specific assembly , 2004, Nature materials.

[181]  W. Meier,et al.  Ion-carrier controlled precipitation of calcium phosphate in giant ABA triblock copolymer vesicles. , 2001, Chemical communications.

[182]  Gleb B. Sukhorukov,et al.  LAYER-BY-LAYER SELF ASSEMBLY OF POLYELECTROLYTES ON COLLOIDAL PARTICLES , 1998 .

[183]  M. Schwartz,et al.  The adsorption of coliphage lambda to its host: effect of variations in the surface density of receptor and in phage-receptor affinity. , 1976, Journal of molecular biology.

[184]  Wolfgang Meier,et al.  Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z , 2007, Proceedings of the National Academy of Sciences.

[185]  Cheryl A Kerfeld,et al.  Identification and structural analysis of a novel carboxysome shell protein with implications for metabolite transport. , 2009, Journal of molecular biology.

[186]  W. V. Shaw,et al.  Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts , 1991, Nature.

[187]  A. Kishimura,et al.  Encapsulation of myoglobin in PEGylated polyion complex vesicles made from a pair of oppositely charged block ionomers: a physiologically available oxygen carrier. , 2007, Angewandte Chemie.

[188]  Mingwu Shen,et al.  Polyelectrolyte multilayer nanoreactors toward the synthesis of diverse nanostructured materials , 2004 .