Pulse-regime single-mode operation of antiwaveguide photonic-crystal 1300-nm VCSEL

A self-consistent pulse-operation model of an InP-based 1300-nm AlInGaAs vertical-cavity surface-emitting diode laser with filled-photonic-crystal is presented. It is shown that low threshold characteristics and strong transverse-mode discrimination can be simultaneously achieved for optimized photonic crystal structure for broad optical apertures.

[1]  Judy M Rorison,et al.  Theoretical investigation of transverse optical modes in photonic-crystal waveguides imbedded into proton-implanted and oxide-confined vertical-cavity surface-emitting lasers , 2005 .

[2]  H. Li,et al.  Vertical-cavity surface-emitting laser devices , 2003 .

[3]  L. Coldren,et al.  Optical Design of InAlGaAs Low-Loss Tunnel-Junction Apertures for Long-Wavelength Vertical-Cavity Lasers , 2006, IEEE Journal of Quantum Electronics.

[4]  Thomas F. Krauss,et al.  High-aspect-ratio chemically assisted ion-beam etching for photonic crystals using a high beam voltage-current ratio , 2004 .

[5]  J. Merz,et al.  Rapid thermal alloyed ohmic contact on inp , 1987 .

[6]  Kent D. Choquette,et al.  Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers , 2003 .

[7]  P. Dapkus,et al.  Ultralow threshold current vertical-cavity surface-emitting lasers with AlAs oxide-GaAs distributed Bragg reflectors , 1995, IEEE Photonics Technology Letters.

[8]  Robert P. Sarzała,et al.  Optimization of 1.3 µm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation , 2004 .

[9]  K. Panajotov,et al.  Single mode condition and modes discrimination in photonic-crystal 1.3 mum AlInGaAs/InP VCSEL. , 2007, Optics express.

[10]  Hugo Thienpont,et al.  Strong modes discrimination and low threshold in cw regime of 1300 nm AlInGaAs/InP VCSEL induced by photonic crystal , 2009 .

[11]  K. Asakawa,et al.  Precise control of dry etching for nanometer scale air-hole arrays in two-dimensional GaAs/AlGaAs photonic crystal slabs , 2007 .

[12]  H. Sigg,et al.  The refractive index of AlxGa1−xAs below the band gap: Accurate determination and empirical modeling , 2000 .

[13]  K. Panajotov,et al.  PlaneWave Admittance Method- a novel approach for determining the electromagnetic modes in photonic structures. , 2005, Optics express.

[14]  Anand Gopinath,et al.  Polarization-insensitive quantum-well semiconductor optical amplifiers , 2002 .

[15]  Kent D. Choquette,et al.  In-phase evanescent coupling of two-dimensional arrays of defect cavities in photonic crystal vertical cavity surface emitting lasers , 2006 .

[16]  H. J. Unold,et al.  Theoretical study of cold-cavity single-mode conditions in vertical-cavity surface-emitting lasers with incorporated two-dimensional photonic crystals , 2003 .

[17]  Hugo Thienpont,et al.  Modal gain and confinement factors in top- and bottom-emitting photonic-crystal VCSEL , 2008 .

[18]  Joachim Piprek,et al.  What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes? , 2002 .

[19]  E. Gini,et al.  The refractive index of InP and its temperature dependence in the wavelength range from 1.2 /spl mu/m to 1.6 /spl mu/m , 1996, Proceedings of 8th International Conference on Indium Phosphide and Related Materials.

[20]  K. Panajotov,et al.  Optimal Parameters of Photonic-Crystal Vertical-Cavity Surface-Emitting Diode Lasers , 2007, Journal of Lightwave Technology.

[21]  Hong-Gyu Park,et al.  Characteristics of electrically driven two-dimensional photonic crystal lasers , 2005, IEEE Journal of Quantum Electronics.

[22]  Jen-Inn Chyi,et al.  Theoretical Study of the Temperature Dependence of 1.3-pm AlGaInAs-InP Multiple-Quantum-Well Lasers , 1996 .

[23]  Gregory Belenky,et al.  Novel design of AlGaInAs-InP lasers operating at 1.3 /spl mu/m , 1995 .

[24]  Ian H. White,et al.  1.3-/spl mu/m quantum-well InGaAsP, AlGaInAs, and InGaAsN laser material gain: a theoretical study , 2002 .

[25]  A. W. Jackson,et al.  High-power 1320-nm wafer-bonded VCSELs with tunnel junctions , 2003, IEEE Photonics Technology Letters.