Optimal filtering in fractional Fourier domains

For time-invariant degradation models and stationary signals and noise, the classical Fourier domain Wiener filter, which can be implemented in O(N log N) time, gives the minimum mean-square-error estimate of the original undistorted signal. For time-varying degradations and nonstationary processes, however, the optimal linear estimate requires O(N/sup 2/) time for implementation. We consider filtering in fractional Fourier domains, which enables significant reduction of the error compared with ordinary Fourier domain filtering for certain types of degradation and noise (especially of chirped nature), while requiring only O(N log N) implementation time. Thus, improved performance is achieved at no additional cost. Expressions for the optimal filter functions in fractional domains are derived, and several illustrative examples are given in which significant reduction of the error (by a factor of 50) is obtained.

[1]  Levent Onural,et al.  DIGITAL DECODING OF IN-LINE HOLOGRAMS , 1987 .

[2]  W. Kozek,et al.  A comparative study of linear and nonlinear time-frequency filters , 1992, [1992] Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis.

[3]  Thomas W. Parks,et al.  Time-varying filtering and signal estimation using Wigner distribution synthesis techniques , 1986, IEEE Trans. Acoust. Speech Signal Process..

[4]  A. Papoulis Signal Analysis , 1977 .

[5]  O. Soares,et al.  Fractional Fourier transforms and optical systems , 1994 .

[6]  F. H. Kerr,et al.  On Namias's fractional Fourier transforms , 1987 .

[7]  Levent Onural,et al.  Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms , 1994 .

[8]  Chrysostomos L. Nikias,et al.  A new positive time-frequency distribution , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[9]  L. Zadeh,et al.  Frequency Analysis of Variable Networks , 1950, Proceedings of the IRE.

[10]  Werner Kozek,et al.  Time-frequency projection filters and time-frequency signal expansions , 1994, IEEE Trans. Signal Process..

[11]  P. Pellat-Finet,et al.  Fractional order Fourier transform and Fourier optics , 1994 .

[12]  Luís B. Almeida,et al.  The fractional Fourier transform and time-frequency representations , 1994, IEEE Trans. Signal Process..

[13]  A. Lohmann Image rotation, Wigner rotation, and the fractional Fourier transform , 1993 .

[14]  H. Ozaktas,et al.  Fractional Fourier transforms and their optical implementation. II , 1993 .

[15]  John C. Wood,et al.  Radon transformation of the Wigner spectrum , 1992, Optics & Photonics.

[16]  M G Raymer,et al.  Chronocyclic tomography for measuring the amplitude and phase structure of optical pulses. , 1993, Optics letters.

[17]  R. Bracewell,et al.  Adaptive chirplet representation of signals on time-frequency plane , 1991 .

[18]  Patrick Flandrin,et al.  Wigner-Ville spectral analysis of nonstationary processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[19]  Haldun M. Özaktas,et al.  Fractional Fourier domains , 1995, Signal Process..

[20]  D. F. McAlister,et al.  Spatial and Temporal Optical Field Reconstruction Using Phase-Space Tomography , 1994 .

[21]  H. Ozaktas,et al.  Fractional Fourier optics , 1995 .

[22]  Beck,et al.  Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. , 1993, Physical review letters.

[23]  J. Fitch Synthetic Aperture Radar , 1987 .

[24]  Gozde Bozdagi Akar,et al.  Digital computation of the fractional Fourier transform , 1996, IEEE Trans. Signal Process..

[25]  Walls,et al.  Quantum superpositions generated by quantum nondemolition measurements. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[26]  John C. Wood,et al.  Radon transformation of time-frequency distributions for analysis of multicomponent signals , 1994, IEEE Trans. Signal Process..

[27]  Beck,et al.  Complex wave-field reconstruction using phase-space tomography. , 1994, Physical review letters.

[28]  H. Ozaktas,et al.  Fourier transforms of fractional order and their optical interpretation , 1993 .

[29]  P. Pellat-Finet Fresnel diffraction and the fractional-order Fourier transform. , 1994, Optics letters.

[30]  M. Alper Kutay,et al.  Optimal image restoration with the fractional Fourier transform , 1998 .

[31]  Werner Kozek,et al.  Second-order time-frequency synthesis of nonstationary random processes , 1995, IEEE Trans. Inf. Theory.

[32]  A. Lohmann,et al.  RELATIONSHIPS BETWEEN THE RADON-WIGNER AND FRACTIONAL FOURIER TRANSFORMS , 1994 .

[33]  Levent Onural,et al.  Extraction of three-dimensional object-location information directly from in-line holograms using Wigner analysis , 1992 .

[34]  S. Haykin,et al.  'Chirplets' and 'warblets': novel time─frequency methods , 1992 .

[35]  Francis T. S. Yu,et al.  Optical Information Processing , 1982 .

[36]  Bahaa E. A. Saleh,et al.  Time-variant filtering of signals in the mixed time frequency domain , 1985, IEEE Trans. Acoust. Speech Signal Process..

[37]  Levent Onural,et al.  Optimal filtering in fractional Fourier domains , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[38]  V. Namias The Fractional Order Fourier Transform and its Application to Quantum Mechanics , 1980 .