On the tau function of the hypergeometric equation
暂无分享,去创建一个
[1] P. Alam. ‘A’ , 2021, Composites Engineering: An A–Z Guide.
[2] J. Teschner,et al. Trinion conformal blocks from topological strings , 2019, Journal of High Energy Physics.
[3] G. Sabidussi,et al. Gauge theory and symplectic geometry , 1997 .
[4] O. Lisovyy,et al. Fredholm Determinant and Nekrasov Sum Representations of Isomonodromic Tau Functions , 2016, 1608.00958.
[5] A. Its,et al. Connection Problem for the Tau-Function of the Sine-Gordon Reduction of Painlevé-III Equation via the Riemann-Hilbert Approach , 2015, 1506.07485.
[6] H. Dorn,et al. Two and three point functions in Liouville theory , 1994, hep-th/9403141.
[7] O. Lisovyy,et al. Isomonodromic Tau-Functions from Liouville Conformal Blocks , 2014, 1401.6104.
[8] Moduli spaces of local systems and higher Teichmüller theory , 2003, math/0311149.
[9] J. Palmer. Zeros of the Jimbo, Miwa, Ueno tau function , 1998, solv-int/9810004.
[10] A. Zamolodchikov. Three-point function in the minimal Liouville gravity , 2005, Theoretical and Mathematical Physics.
[11] B. Malgrange. Sur les déformations isomonodromiques. II. Singularités irrégulières , 1982 .
[12] M. Bertola. The Dependence on the Monodromy Data of the Isomonodromic Tau Function , 2009, 1601.04790.
[13] O. Lisovyy,et al. Monodromy dependence and connection formulae for isomonodromic tau functions , 2016, 1604.03082.
[14] M. Bertola. Correction to: The Dependence on the Monodromy Data of the Isomonodromic Tau Function , 2021, Communications in Mathematical Physics.
[15] Michio Jimbo,et al. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function , 1981 .
[16] Three-point function in the minimal Liouville gravity , 2005 .
[17] Michio Jimbo,et al. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .
[18] O. Lisovyy,et al. Conformal field theory of Painlevé VI , 2012, 1207.0787.
[19] M. Jimbo,et al. Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .
[20] On the Tau Function for the Schlesinger Equation of Isomonodromic Deformations , 2003 .
[21] I. Gohberg,et al. Factorization of Matrix Functions and Singular Integral Operators , 1980 .
[22] Denis Bernard,et al. Introduction to classical integrable systems , 2003 .