On the tau function of the hypergeometric equation

The monodromy map for a rank-two system of differential equations with three Fuchsian singularities is classically solved by the Kummer formulæ for Gauss’ hypergeometric functions. We define the tau-function of such a system as the generating function of the extended monodromy symplectomorphism, using an idea recently developed. This formulation allows us to determine the dependence of the tau-function on the monodromy data. Using the explicit solution of the monodromy problem, the tau-function is then explicitly written in terms of Barnes G-function. In particular, if the Fuchsian singularities are placed to 0, 1 and ∞, this gives the structure constants of the asymptotical formula of Iorgov-Gamayun-Lisovyy for solutions of Painlevé VI equation.

[1]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[2]  J. Teschner,et al.  Trinion conformal blocks from topological strings , 2019, Journal of High Energy Physics.

[3]  G. Sabidussi,et al.  Gauge theory and symplectic geometry , 1997 .

[4]  O. Lisovyy,et al.  Fredholm Determinant and Nekrasov Sum Representations of Isomonodromic Tau Functions , 2016, 1608.00958.

[5]  A. Its,et al.  Connection Problem for the Tau-Function of the Sine-Gordon Reduction of Painlevé-III Equation via the Riemann-Hilbert Approach , 2015, 1506.07485.

[6]  H. Dorn,et al.  Two and three point functions in Liouville theory , 1994, hep-th/9403141.

[7]  O. Lisovyy,et al.  Isomonodromic Tau-Functions from Liouville Conformal Blocks , 2014, 1401.6104.

[8]  Moduli spaces of local systems and higher Teichmüller theory , 2003, math/0311149.

[9]  J. Palmer Zeros of the Jimbo, Miwa, Ueno tau function , 1998, solv-int/9810004.

[10]  A. Zamolodchikov Three-point function in the minimal Liouville gravity , 2005, Theoretical and Mathematical Physics.

[11]  B. Malgrange Sur les déformations isomonodromiques. II. Singularités irrégulières , 1982 .

[12]  M. Bertola The Dependence on the Monodromy Data of the Isomonodromic Tau Function , 2009, 1601.04790.

[13]  O. Lisovyy,et al.  Monodromy dependence and connection formulae for isomonodromic tau functions , 2016, 1604.03082.

[14]  M. Bertola Correction to: The Dependence on the Monodromy Data of the Isomonodromic Tau Function , 2021, Communications in Mathematical Physics.

[15]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function , 1981 .

[16]  Three-point function in the minimal Liouville gravity , 2005 .

[17]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[18]  O. Lisovyy,et al.  Conformal field theory of Painlevé VI , 2012, 1207.0787.

[19]  M. Jimbo,et al.  Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .

[20]  On the Tau Function for the Schlesinger Equation of Isomonodromic Deformations , 2003 .

[21]  I. Gohberg,et al.  Factorization of Matrix Functions and Singular Integral Operators , 1980 .

[22]  Denis Bernard,et al.  Introduction to classical integrable systems , 2003 .