Support Vector Machines for Signal Processing

[1]  Kezhi Mao,et al.  Feature subset selection for support vector machines through discriminative function pruning analysis , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  G. Baudat,et al.  Feature vector selection and projection using kernels , 2003, Neurocomputing.

[3]  F. Palmieri,et al.  Noncausal filters: possible implementations and their complexity , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[4]  Fernando Pérez-Cruz,et al.  Empirical risk minimization for support vector classifiers , 2003, IEEE Trans. Neural Networks.

[5]  Tareq Y. Al-Naffouri,et al.  Transient analysis of adaptive filters with error nonlinearities , 2003, IEEE Trans. Signal Process..

[6]  Fernando Pérez-Cruz,et al.  SVC-based equalizer for burst TDMA transmissions , 2001, Signal Process..

[7]  Simon Haykin,et al.  Simple and robust methods for support vector expansions , 1999, IEEE Trans. Neural Networks.

[8]  Simon Haykin,et al.  An explicit algorithm for training support vector machines , 1999, IEEE Signal Processing Letters.

[9]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[10]  Bilge Karaçali,et al.  Fast minimization of structural risk by nearest neighbor rule , 2003, IEEE Trans. Neural Networks.

[11]  Daniel D. Lee,et al.  Multiplicative Updates for Nonnegative Quadratic Programming in Support Vector Machines , 2002, NIPS.

[12]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[13]  Francesco Palmieri,et al.  Support Vector Machine for Nonparametric Binary Hypothesis Testing , 1999 .