Theoretical model for the tensile strength of polymer materials considering the effects of temperature and particle content

In this study, a physics-based temperature dependent tensile strength model for polymer materials is presented based on the equivalent relationship between the strain energy and the corresponding heat energy. This model establishes the quantitative relationship between the tensile strength of polymer materials at different temperatures, the temperature dependent Young’s modulus, the specific heat capacity at constant pressure, temperature and melting temperature. Moreover, based on the proposed temperature dependent strength model of polymers, we further considers the effect of particle content on the tensile strength of particulate-polymer composites, and finally develop the temperature and particle content dependent tensile strength model for particulate-polymer composites. Reasonable agreement is obtained between the models predictions and the available experimental results of tensile strength of polymer materials. Especially, by employing the characterized model, the optimal particle content at different temperatures corresponding to the superior mechanical properties for particulate-polymer composites can be indirectly obtained. The proposed models provide a novel train of thought to predict the tensile strength of polymer materials at different temperatures and particle contents.

[1]  Jianzuo Ma,et al.  A novel temperature dependent yield strength model for metals considering precipitation strengthening and strain rate , 2017 .

[2]  H. Dai,et al.  A novel method for prediction of tensile strength of spherical particle‐filled polymer composites with strong adhesion , 2017 .

[3]  Hengyang Li,et al.  On predicting the effective elastic properties of polymer nanocomposites by novel numerical implementation of asymptotic homogenization method , 2016 .

[4]  M. Cho,et al.  The influence of nanoparticle size on the mechanical properties of polymer nanocomposites and the associated interphase region: A multiscale approach , 2015 .

[5]  V. Svorcik,et al.  Polyethylene naphthalate as an excellent candidate for ripple nanopatterning , 2013 .

[6]  C. Stafford,et al.  Influence of chain stiffness on thermal and mechanical properties of polymer thin films , 2011 .

[7]  J. A. Mohandesi,et al.  Effect of temperature and particle weight fraction on mechanical and micromechanical properties of sand-polyethylene terephthalate composites: A laboratory and discrete element method study , 2011 .

[8]  N. Saxena,et al.  Morphological and mechanical characterization of a PMMA/CdS nanocomposite , 2011 .

[9]  D. Patidar,et al.  Investigation of temperature-dependent mechanical properties of CdS/PMMA nanocomposites , 2011 .

[10]  D. Patidar,et al.  Storage modulus and glass transition behaviour of CdS/PMMA nanocomposites , 2011 .

[11]  C. Das,et al.  Effect of SiC coated MWCNTs on the thermal and mechanical properties of PEI/LCP blend , 2010 .

[12]  R. Fruehmann,et al.  Derivation of temperature dependent mechanical properties of polymer foam core materials using optical extensometry , 2010 .

[13]  O. Erenkov,et al.  Mechanical properties of polymer composites , 2010 .

[14]  D. Fang,et al.  The temperature-dependent fracture strength model for ultra-high temperature ceramics , 2010 .

[15]  Y. Mai,et al.  Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites , 2008 .

[16]  K. Friedrich,et al.  Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures , 2008 .

[17]  Till Vallée,et al.  Modeling of thermo-physical properties for FRP composites under elevated and high temperature , 2007 .

[18]  Konstantin Y. Volokh,et al.  Hyperelasticity with softening for modeling materials failure , 2007 .

[19]  Anthony J. Kinloch,et al.  Toughening mechanisms of nanoparticle-modified epoxy polymers , 2007 .

[20]  J. E. Mark,et al.  Physical properties of polymers handbook , 2007 .

[21]  Ramesh Talreja,et al.  Characterization of viscoelasticity and damage in high temperature polymer matrix composites , 2006 .

[22]  Tadaharu Adachi,et al.  Thermo-viscoelastic properties of silica particulate-reinforced epoxy composites : Considered in terms of the particle packing model , 2006 .

[23]  U. Sundararaj,et al.  Thermal, Rheological, and Mechanical Behaviors of LLDPE/PEMA/Clay Nanocomposites: Effect of Interaction Between Polymer, Compatibilizer, and Nanofiller , 2006 .

[24]  E. Kumacheva,et al.  Order versus Disorder: Effect of Structure on the Mechanical Properties of Polymer Material , 2006 .

[25]  I. M. Ward,et al.  Hot compaction of polyethylene naphthalate , 2004 .

[26]  Ki-Young Kim,et al.  Interlaminar fracture toughness of CF/PEI composites at elevated temperatures: roles of matrix toughness and fibre/matrix adhesion , 2004 .

[27]  Jungang Gao,et al.  Curing kinetics and thermal property characterization of the bisphenol-F epoxy resin and phthalic anhydride system , 2002 .

[28]  S. Hashemi,et al.  Fracture behaviour of polyethylene naphthalate (PEN) , 2002 .

[29]  Guoqiang Li,et al.  Analytical modeling of tensile strength of particulate-filled composites , 2001 .

[30]  N. Chand,et al.  Development, structure and strength properties of PP/PMMA/FA blends , 2000 .

[31]  V. Krstić,et al.  Role of residual stress field interaction in strengthening of particulate-reinforced composites , 1992 .

[32]  J. Donnet,et al.  Temperature dependence of the mechanical properties of EPDM rubber-polyethylene blends filled with aluminium hydrate particles , 1989 .

[33]  J. Donnet,et al.  Temperature dependence of the mechanical properties of EPDM rubber-polyethylene blends filled with aluminium hydrate particles , 1989 .

[34]  B. Pukánszky,et al.  Composition dependence of tensile yield stress in filled polymers , 1988 .

[35]  D. Bigg Mechanical properties of particulate filled polymers , 1987 .

[36]  B. Wunderlich,et al.  Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules VI. Acrylic Polymers , 1982 .

[37]  M. A. Koltunov,et al.  The mechanical properties of polyformaldehyde , 1966 .