Interpolation with Exponential B-Splines in Tension
暂无分享,去创建一个
[1] T. Lyche,et al. Constrained spline approximation of functions and data based on constrained knot removal , 1990 .
[2] Tom Lyche,et al. Mathematical methods in computer aided geometric design , 1989 .
[3] W. Boehm. Inserting New Knots into B-spline Curves , 1980 .
[4] G. Nielson. SOME PIECEWISE POLYNOMIAL ALTERNATIVES TO SPLINES UNDER TENSION , 1974 .
[5] Richard F. Riesenfeld,et al. Discrete box splines and refinement algorithms , 1984, Comput. Aided Geom. Des..
[6] Knut Mørken,et al. Knot removal for parametric B-spline curves and surfaces , 1987, Comput. Aided Geom. Des..
[7] C. Chui,et al. Approximation Theory VI , 1990 .
[8] Gregory M. Nielson,et al. A method for construction of surfaces under tension , 1984 .
[9] Panagiotis D. Kaklis,et al. An algorithm for constructing convexity and monotonicity-preserving splines in tension , 1988, Comput. Aided Geom. Des..
[10] Tom Lyche,et al. Algorithms for degree-raising of splines , 1985, TOGS.
[11] Tom Lyche,et al. Construction of Exponential Tension B-splines of Arbitrary Order , 1991, Curves and Surfaces.
[12] K. Salkauskas. $C^1$ >splines for interpolation of rapidly varying data , 1984 .
[13] T. Lyche. Note on the Oslo algorithm , 1988 .
[14] Tom Lyche,et al. Knot line refinement algorithms for tensor product B-spline surfaces , 1985, Comput. Aided Geom. Des..
[15] A. K. Cline. Scalar- and planar-valued curve fitting using splines under tension , 1974, Commun. ACM.
[16] T. Lyche. Discrete B-Splines and Conversion Problems , 1990 .
[17] Robert Schaback. Rational geometric curve interpolation , 1992 .
[18] J. Douglas Faires,et al. Numerical Analysis , 1981 .
[19] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[20] Tom Lyche,et al. Fortran subroutines for computing smoothing and interpolating natural splines , 1983 .
[21] Brian A. Barsky,et al. Computer Graphics and Geometric Modeling Using Beta-splines , 1988, Computer Science Workbench.
[22] R. E. Carlson,et al. Monotone Piecewise Cubic Interpolation , 1980 .
[23] Steven Pruess,et al. Properties of splines in tension , 1976 .
[24] Robert J. Renka,et al. Interpolatory tension splines with automatic selection of tension factors , 1987 .
[25] P. Rentrop. An algorithm for the computation of the exponential spline , 1980 .
[26] L. Schumaker,et al. Curves and Surfaces , 1991, Lecture Notes in Computer Science.
[27] G. Baszenski,et al. Computer graphics and geometric modelling using beta-splines: B A Barsky Springer, Berlin, FRG (1988) 156 pp DM78 , 1989 .
[28] C. D. Boor,et al. Backward error analysis for totally positive linear systems , 1976 .
[29] Tom Lyche,et al. Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces , 1992 .
[30] T. Lyche,et al. A discrete approach to knot removal and degree reduction algorithms for splines , 1987 .
[31] L. Schumaker,et al. Degree raising for splines , 1986 .
[32] T. Lyche,et al. A Data-Reduction Strategy for Splines with Applications to the Approximation of Functions and Data , 1988 .
[33] Tom Lyche,et al. Bivariate interpolation with quadratic box splines , 1988 .
[34] T. Lyche,et al. Making the Oslo algorithm more efficient , 1986 .
[35] Hans Hagen,et al. Curve and Surface Design , 1992 .
[36] D. Schweikert. An Interpolation Curve Using a Spline in Tension , 1966 .
[37] C. Micchelli,et al. Computation of Curves and Surfaces , 1990 .
[38] Thomas A. Foley,et al. Local control of interval tension using weighted splines , 1986, Comput. Aided Geom. Des..
[39] Tom Lyche,et al. Cones and recurrence relations for simplex splines , 1987 .