Robust and fault tolerant controller for attitude control of a satellite launch vehicle

The design of a robust and fault-tolerant control system for the attitude control of a satellite launch vehicle is described. The robust controller is designed for the nominal system in order to reduce the effect of disturbances in the system. Finally, a reconfigured controller is designed to stabilise the system by placing the closed-loop poles within a desired region and also to guarantee the disturbance attenuation below a certain level. The linear matrix inequality technique is used to design the controllers. The performance of the nominal and reconfigured controller is presented.

[1]  Ashok Joshi,et al.  Modelling and Simulation of Launch Vehicle Digital Auto Pilot , 2002 .

[2]  S. Gutman,et al.  A general theory for matrix root-clustering in subregions of the complex plane , 1981 .

[3]  A. Willsky,et al.  Analytical redundancy and the design of robust failure detection systems , 1984 .

[4]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[5]  Arthur L. Greensite,et al.  Analysis and design of space vehicle flight control systems , 1970 .

[6]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[7]  Mark L. Nagurka,et al.  Unified H/sub /spl infin// approach for a singularly perturbed aircraft model , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[8]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[9]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[10]  Alexandre Trofino,et al.  Sufficient LMI conditions for output feedback control problems , 1999, IEEE Trans. Autom. Control..

[11]  R. Saeks,et al.  On the design of a neural network autolander , 1999 .

[12]  Guang Q. Xing,et al.  Design of a reduced order H∞ robust controller for an expendable launch vehicle in the presence of structured and unstructured parameter uncertainty , 1997 .

[13]  Min-Sen Chiu,et al.  Robust PID controller design via LMI approach , 2002 .

[14]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[15]  Faryar Jabbari,et al.  Disturbance attenuation for systems with input saturation: An LMI approach , 1999, IEEE Trans. Autom. Control..

[16]  Ciann-Dong Yang,et al.  Mixed H2/H∞ state-feedback design for microsatellite attitude control , 2002 .

[17]  Uri Shaked,et al.  An LPD approach to robust H2 and H∞ static output-feedback design , 2003, IEEE Trans. Autom. Control..

[18]  Pramod P. Khargonekar,et al.  H2-optimal control with an H∞-constraint The state feedback case , 1991, Autom..

[19]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[20]  Sophie Tarbouriech,et al.  Output feedback robust stabilization of uncertain linear systems with saturating controls: an LMI approach , 1999, IEEE Trans. Autom. Control..

[21]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..