Quantification of numerical uncertainty in computational fluid dynamics modelling of hydrocyclones

Abstract Large Eddy Simulations of the flow through a hydrocyclone are used to demonstrate that the Grid Convergence Index (GCI) is a practical method of accounting for numerical uncertainty. The small values of GCI (

[1]  Manfred Piesche,et al.  Investigations on the flow and separation behaviour of hydrocyclones using computational fluid dynamics , 2004 .

[2]  Peter N. Holtham,et al.  Towards improved hydrocyclone models - Contributions from computational fluid dynamics , 2010 .

[3]  P. Roache Perspective: A Method for Uniform Reporting of Grid Refinement Studies , 1994 .

[4]  Timothy J. Napier-Munn,et al.  Two empirical hydrocyclone models revisited , 2003 .

[5]  F. Nicoud,et al.  Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor , 1999 .

[6]  K. Rajamani,et al.  Phenomenological model of the hydrocyclone: Model development and verification for single-phase flow , 1988 .

[7]  U. Ghia,et al.  Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications , 2007 .

[8]  William L. Oberkampf,et al.  Guide for the verification and validation of computational fluid dynamics simulations , 1998 .

[9]  Koulis Pericleous,et al.  The hydrocyclone classifier — A numerical approach , 1986 .

[10]  Suresh Menon,et al.  Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows , 1997 .

[11]  Aibing Yu,et al.  Numerical study of the gas-liquid-solid flow in hydrocyclones with different configuration of vortex finder , 2008 .

[12]  E. G. Hauptmann,et al.  Modelling the flow in a hydrocyclone , 1994 .

[13]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .

[14]  R. A. Williams,et al.  Simulation of non-Newtonian flow in a hydrocyclone : Separation processes , 1994 .

[15]  Malcolm R. Davidson,et al.  NUMERICAL-CALCULATIONS OF FLOW IN A HYDROCYCLONE OPERATING WITHOUT AN AIR CORE , 1988 .

[16]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .

[17]  J. A. Delgadillo,et al.  Exploration of hydrocyclone designs using computational fluid dynamics , 2007 .

[18]  George Em Karniadakis,et al.  Toward a Numerical Error Bar in CFD , 1995 .

[19]  Ian David Lockhart Bogle,et al.  Computers and Chemical Engineering , 2008 .

[20]  Tomasz Dyakowski,et al.  New understanding of a hydrocyclone flow field and separation mechanism from computational fluid dynamics , 2004 .

[21]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[22]  William L. Oberkampf,et al.  Methodology for computational fluid dynamics code verification/validation , 1995 .

[23]  Andrzej F. Nowakowski,et al.  Application of CFD to modelling of the flow in hydrocyclones: Is this a realizable option or still a research challenge? , 2004 .

[24]  Raj K. Rajamani,et al.  A comparative study of three turbulence-closure models for the hydrocyclone problem , 2005 .

[25]  T. Dyakowski,et al.  A THREE DIMENSIONAL SIMULATION OF HYDROCYCLONE BEHAVIOUR , 1999 .

[26]  P. Roache QUANTIFICATION OF UNCERTAINTY IN COMPUTATIONAL FLUID DYNAMICS , 1997 .

[27]  Christopher J. Freitas,et al.  The issue of numerical uncertainty , 2002 .

[28]  Donald R. Woods,et al.  The velocity distribution within a hydrocyclone operating without an air core , 1973 .

[29]  L. Richardson,et al.  The Deferred Approach to the Limit. Part I. Single Lattice. Part II. Interpenetrating Lattices , 1927 .

[30]  R. Sripriya,et al.  CFD modelling of hydrocyclone—prediction of cut size , 2005 .