An explicit nonstandard finite difference scheme for the FitzHugh–Nagumo equations

In this work, we consider numerical solutions of the FitzHugh–Nagumo system of equations describing the propagation of electrical signals in nerve axons. The system consists of two coupled equations: a nonlinear partial differential equation and a linear ordinary differential equation. We begin with a review of the qualitative properties of the nonlinear space independent system of equations. The subequation approach is applied to derive dynamically consistent schemes for the submodels. This is followed by a consistent and systematic merging of the subschemes to give three explicit nonstandard finite difference schemes in the limit of fast extinction and slow recovery. A qualitative study of the schemes together with the error analysis is presented. Numerical simulations are given to support the theoretical results and verify the efficiency of the proposed schemes.

[1]  Roumen Anguelov,et al.  Nonstandard finite difference method by nonlocal approximation , 2003, Math. Comput. Simul..

[2]  C. Rocsoreanu,et al.  The FitzHugh-Nagumo Model: Bifurcation and Dynamics , 2010 .

[3]  Ronald E. Mickens,et al.  Exact finite-difference schemes for first order differential equations having three distinct fixed-points , 2007 .

[4]  B. Zinner,et al.  Existence of traveling wavefront solutions for the discrete Nagumo equation , 1992 .

[5]  C. Quiñinao,et al.  On a Kinetic Fitzhugh–Nagumo Model of Neuronal Network , 2015, 1503.00492.

[6]  Paul Gordon,et al.  Nonsymmetric Difference Equations , 1965 .

[7]  Maria E. Schonbek,et al.  Fitzhugh-nagumo Revisited: Types of bifurcations, Periodical Forcing and Stability Regions by a Lyapunov Functional , 2004, Int. J. Bifurc. Chaos.

[8]  Bernie D. Shizgal,et al.  Pseudospectral method of solution of the Fitzhugh-Nagumo equation , 2009, Math. Comput. Simul..

[9]  Ronald E. Mickens,et al.  Nonstandard finite difference schemes for reaction‐diffusion equations , 1999 .

[10]  Giles Auchmuty,et al.  Rotating wave solutions of the FitzHugh–Nagumo equations , 2006, Journal of mathematical biology.

[11]  Jean M.-S. Lubuma,et al.  Coupling finite volume and nonstandard finite difference schemes for a singularly perturbed Schrödinger equation , 2016, Int. J. Comput. Math..

[12]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[13]  Michael Chapwanya,et al.  An explicit nonstandard finite difference scheme for the Allen–Cahn equation , 2015 .

[14]  Michael Chapwanya,et al.  Finite difference discretisation of a model for biological nerve conduction , 2016 .

[15]  Roumen Anguelov,et al.  Contributions to the mathematics of the nonstandard finite difference method and applications , 2001 .

[16]  Ronald E. Mickens,et al.  Nonstandard finite difference schemes for Michaelis–Menten type reaction‐diffusion equations , 2013 .

[17]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[18]  Guido Sweers,et al.  Existence and uniqueness of solutions on bounded domains to a FitzHugh–Nagumo type elliptic system , 2001 .

[19]  R. Mickens Nonstandard Finite Difference Models of Differential Equations , 1993 .

[20]  Ronald E. Mickens,et al.  From enzyme kinetics to epidemiological models with Michaelis-Menten contact rate: Design of nonstandard finite difference schemes , 2012, Comput. Math. Appl..

[21]  AnguelovRoumen,et al.  Nonstandard finite difference method by nonlocal approximation , 2003 .

[22]  John Guckenheimer,et al.  Homoclinic Orbits of the FitzHugh-Nagumo Equation: Bifurcations in the Full System , 2010, SIAM J. Appl. Dyn. Syst..

[23]  Y. N. Kyrychkoa,et al.  Persistence of travelling wave solutions of a fourth order diffusion system , 2004 .

[24]  Luis L. Bonilla,et al.  Pulse Propagation in Discrete Systems of Coupled Excitable Cells , 2003, SIAM J. Appl. Math..

[25]  G. Carpenter A geometric approach to singular perturbation problems with applications to nerve impulse equations , 1977 .

[26]  Roumen Anguelov,et al.  On non-standard finite difference models of reaction-diffusion equations , 2005 .

[27]  A. A. Soliman,et al.  Numerical Simulation of the FitzHugh-Nagumo Equations , 2012 .

[28]  Lih-Ing W. Roeger Nonstandard finite difference schemes for differential equations with n+1 distinct fixed-points , 2009 .

[29]  H. Koch,et al.  Existence and stability of traveling pulse solutions of the FitzHugh–Nagumo equation , 2015 .

[30]  Abba B. Gumel,et al.  Nonstandard discretizations of the generalized Nagumo reaction‐diffusion equation , 2003 .

[31]  Guido Sweers,et al.  Solutions with internal jump for an autonomous elliptic system of FitzHugh–Nagumo type , 2003 .

[32]  Joel Smoller,et al.  Qualitative theory of the FitzHugh-Nagumo equations , 1978 .

[33]  A. R. Gourlay,et al.  Hopscotch: a Fast Second-order Partial Differential Equation Solver , 1970 .

[34]  E. H. Twizell,et al.  A second-order scheme for the “Brusselator” reaction–diffusion system , 1999 .