An explicit nonstandard finite difference scheme for the FitzHugh–Nagumo equations
暂无分享,去创建一个
Jean M.-S. Lubuma | Michael Chapwanya | A. R. Appadu | O. A. Jejeniwa | J. Lubuma | A. Appadu | M. Chapwanya
[1] Roumen Anguelov,et al. Nonstandard finite difference method by nonlocal approximation , 2003, Math. Comput. Simul..
[2] C. Rocsoreanu,et al. The FitzHugh-Nagumo Model: Bifurcation and Dynamics , 2010 .
[3] Ronald E. Mickens,et al. Exact finite-difference schemes for first order differential equations having three distinct fixed-points , 2007 .
[4] B. Zinner,et al. Existence of traveling wavefront solutions for the discrete Nagumo equation , 1992 .
[5] C. Quiñinao,et al. On a Kinetic Fitzhugh–Nagumo Model of Neuronal Network , 2015, 1503.00492.
[6] Paul Gordon,et al. Nonsymmetric Difference Equations , 1965 .
[7] Maria E. Schonbek,et al. Fitzhugh-nagumo Revisited: Types of bifurcations, Periodical Forcing and Stability Regions by a Lyapunov Functional , 2004, Int. J. Bifurc. Chaos.
[8] Bernie D. Shizgal,et al. Pseudospectral method of solution of the Fitzhugh-Nagumo equation , 2009, Math. Comput. Simul..
[9] Ronald E. Mickens,et al. Nonstandard finite difference schemes for reaction‐diffusion equations , 1999 .
[10] Giles Auchmuty,et al. Rotating wave solutions of the FitzHugh–Nagumo equations , 2006, Journal of mathematical biology.
[11] Jean M.-S. Lubuma,et al. Coupling finite volume and nonstandard finite difference schemes for a singularly perturbed Schrödinger equation , 2016, Int. J. Comput. Math..
[12] S. Yoshizawa,et al. An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.
[13] Michael Chapwanya,et al. An explicit nonstandard finite difference scheme for the Allen–Cahn equation , 2015 .
[14] Michael Chapwanya,et al. Finite difference discretisation of a model for biological nerve conduction , 2016 .
[15] Roumen Anguelov,et al. Contributions to the mathematics of the nonstandard finite difference method and applications , 2001 .
[16] Ronald E. Mickens,et al. Nonstandard finite difference schemes for Michaelis–Menten type reaction‐diffusion equations , 2013 .
[17] R. FitzHugh. Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.
[18] Guido Sweers,et al. Existence and uniqueness of solutions on bounded domains to a FitzHugh–Nagumo type elliptic system , 2001 .
[19] R. Mickens. Nonstandard Finite Difference Models of Differential Equations , 1993 .
[20] Ronald E. Mickens,et al. From enzyme kinetics to epidemiological models with Michaelis-Menten contact rate: Design of nonstandard finite difference schemes , 2012, Comput. Math. Appl..
[21] AnguelovRoumen,et al. Nonstandard finite difference method by nonlocal approximation , 2003 .
[22] John Guckenheimer,et al. Homoclinic Orbits of the FitzHugh-Nagumo Equation: Bifurcations in the Full System , 2010, SIAM J. Appl. Dyn. Syst..
[23] Y. N. Kyrychkoa,et al. Persistence of travelling wave solutions of a fourth order diffusion system , 2004 .
[24] Luis L. Bonilla,et al. Pulse Propagation in Discrete Systems of Coupled Excitable Cells , 2003, SIAM J. Appl. Math..
[25] G. Carpenter. A geometric approach to singular perturbation problems with applications to nerve impulse equations , 1977 .
[26] Roumen Anguelov,et al. On non-standard finite difference models of reaction-diffusion equations , 2005 .
[27] A. A. Soliman,et al. Numerical Simulation of the FitzHugh-Nagumo Equations , 2012 .
[28] Lih-Ing W. Roeger. Nonstandard finite difference schemes for differential equations with n+1 distinct fixed-points , 2009 .
[29] H. Koch,et al. Existence and stability of traveling pulse solutions of the FitzHugh–Nagumo equation , 2015 .
[30] Abba B. Gumel,et al. Nonstandard discretizations of the generalized Nagumo reaction‐diffusion equation , 2003 .
[31] Guido Sweers,et al. Solutions with internal jump for an autonomous elliptic system of FitzHugh–Nagumo type , 2003 .
[32] Joel Smoller,et al. Qualitative theory of the FitzHugh-Nagumo equations , 1978 .
[33] A. R. Gourlay,et al. Hopscotch: a Fast Second-order Partial Differential Equation Solver , 1970 .
[34] E. H. Twizell,et al. A second-order scheme for the “Brusselator” reaction–diffusion system , 1999 .