A positivity-preserving and conservative high-order flux reconstruction method for the polyatomic Boltzmann-BGK equation

[1]  S. Jaiswal An entropy stable scheme for the non-linear Boltzmann equation , 2022, J. Comput. Phys..

[2]  F. Witherden,et al.  Positivity-Preserving Entropy-Based Adaptive Filtering for Discontinuous Spectral Element Methods , 2022, J. Comput. Phys..

[3]  Tianbai Xiao A flux reconstruction kinetic scheme for the Boltzmann equation , 2021, J. Comput. Phys..

[4]  A. Jameson,et al.  Accuracy, stability, and performance comparison between the spectral difference and flux reconstruction schemes , 2020, Computers & Fluids.

[5]  Kun Xu,et al.  High-order gas-kinetic scheme with parallel computation for direct numerical simulation of turbulent flows , 2020, J. Comput. Phys..

[6]  Yonghao Zhang,et al.  The kinetic Shakhov–Enskog model for non-equilibrium flow of dense gases , 2019, Journal of Fluid Mechanics.

[7]  Will Trojak,et al.  A new family of weighted one-parameter flux reconstruction schemes , 2018, 1809.07846.

[8]  C. Baranger,et al.  A BGK model for high temperature rarefied gas flows , 2018, European Journal of Mechanics - B/Fluids.

[9]  Michael Dumbser,et al.  A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws , 2014, J. Comput. Phys..

[10]  A. Iollo,et al.  A Local Velocity Grid Approach for BGK Equation , 2014 .

[11]  Freddie D. Witherden,et al.  PyFR: An open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach , 2013, Comput. Phys. Commun..

[12]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[13]  Xiangxiong Zhang,et al.  On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..

[14]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[15]  Robert B. Greendyke,et al.  Using the Unied Flow Solver to Investigate the Normal Shock Wave Structure , 2009 .

[16]  H. T. Huynh,et al.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .

[17]  M. M. R. Williams,et al.  A review of the rarefied gas dynamics theory associated with some classical problems in flow and heat transfer , 2001 .

[18]  Luc Mieussens,et al.  DISCRETE VELOCITY MODEL AND IMPLICIT SCHEME FOR THE BGK EQUATION OF RAREFIED GAS DYNAMICS , 2000 .

[19]  L. Mieussens Discrete-Velocity Models and Numerical Schemes for the Boltzmann-BGK Equation in Plane and Axisymmetric Geometries , 2000 .

[20]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[21]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[22]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[23]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[24]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[25]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[26]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[27]  H. Alsmeyer,et al.  Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam , 1976, Journal of Fluid Mechanics.

[28]  M. Camac Argon Shock Thickness , 1964 .

[29]  M. Linzer,et al.  Structure of Shock Fronts in Argon and Nitrogen , 1963 .

[30]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[31]  Xiangxiong Zhang,et al.  Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes , 2011, Journal of Scientific Computing.

[32]  K. Morgan,et al.  A discontinuous finite element solution of the Boltzmann kinetic equation in collisionless and BGK forms for macroscopic gas flows , 2011 .

[33]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[34]  Francesco Bassi,et al.  A High Order Discontinuous Galerkin Method for Compressible Turbulent Flows , 2000 .

[35]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[36]  E. M. Shakhov Generalization of the Krook kinetic relaxation equation , 1968 .

[37]  V. Rusanov,et al.  The calculation of the interaction of non-stationary shock waves and obstacles , 1962 .